6

NRT/KS/19/5756

Bachelor of Arts (B.A.) First Semester Examination MATHEMATICS (Calculus)

Optional Paper—2

Time: Three Hours] [Maximum Marks: 60

N.B. :— (1) Solve all the *five* questions.

- (2) All questions carry equal marks.
- (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) By using ε - δ definition, show that :

$$\lim_{x \to 3} (2x^2 + x) = 21.$$

(B) Examine the continuity of f(x) at x = 2,

where
$$f(x) = \begin{cases} \frac{|x-2|}{(x-2)} & \text{, when } x \neq 2\\ 0 & \text{, when } x = 2 \end{cases}$$

OR

- (C) If f is finitely derivable at a point x = a, then prove that f is continuous at x = a. Give a counter example to show that the converse is not true.
- (D) If $y = (\sin^{-1}x)^2$, then prove that $(1-x^2)y_2 xy_1 = 2$. Hence show that $(1-x^2)y_{n+2} (2n+1) xy_{n+1} n^2y_n = 0$.
- 2. (A) Expand sin x in powers of $\left(x \frac{\pi}{2}\right)$ upto three terms.
 - (B) If a curve is defined by the equation x = f(t); $y = \phi(t)$, then prove that the radius of curvature is :

$$\rho = \frac{(x'^2 + y'^2)^{3/2}}{x'y'' - y'x''}$$

where(') denotes the derivative with respect to t.

OR

(C) Find the asymptotes of the Cubic curve:

$$y^3 - 5xy^2 + 8x^2y - 4x^3 - 3y^2 + 9xy - 6x^2 + 2y - 2x = 1.$$

- (D) Evaluate:
 - (i) $\lim_{x\to\infty} (x+e^x)^{2/x}$

(ii)
$$\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^3}.$$

UNIT—III

3. (A) If $u = \log(x^2 + y^2 + z^2)$, then prove that :

$$x\frac{\partial^2 u}{\partial y \partial z} = y\frac{\partial^2 u}{\partial z \partial x} = z\frac{\partial^2 u}{\partial x \partial y}.$$

(B) If z = f(x, y) is a homogenous function of degree n, then prove that :

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z.$$

OR

(C) If $u = x^2 - y^2$, x = 2r - 3s, y = -r + 8s - 5

find
$$\frac{\partial u}{\partial r}$$
 and $\frac{\partial u}{\partial s}$.

(D) If x + y + z = u, y + z = uv, z = uvw, find the value of the Jacobian of x, y, z with respect to u, v, w.

UNIT—IV

4. (A) Evaluate :
$$\int \frac{x^2 + 2x + 3}{\sqrt{x^2 + x + 1}} dx$$
.

(B) Evaluate :
$$\int \frac{dx}{(x-1)\sqrt{x^2+x+1}}$$
 ; $x > 1$.

OR

(C) Prove that:

$$\int \csc^{n} x dx = \frac{-\csc^{n-2} x \cot x}{(n-1)} + \frac{(n-2)}{(n-1)} \int \csc^{n-2} x dx$$

Hence, evaluate $\int \csc^3 x \, dx$.

(D) Show that:

$$\int_{0}^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi^2}{2ab}.$$

Question—V

- 5. (A) Show that the function f defined by $f(x) = (1+3x)^{\frac{1}{x}}$ where $x \ne 0$, $f(0) = e^3$ is continuous for x = 0.
 - (B) Show that $f(n) = x \mid x \mid$ is derivable at the origin. 1½
 - (C) Expand sin x by using Maclaurin's theorem.
 - (D) Find radius of curvature for $s = 4a \sin \varphi$. $1\frac{1}{2}$

(E) If
$$x = r \cos\theta$$
, $y = r \sin\theta$, find $\frac{\partial(x,y)}{\partial(r,\theta)}$.

(F) Find
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ for the function $z = \tan^{-1}(y/x)$.

(G) Evaluate
$$\int \frac{dx}{\sqrt{x^2 + 2x + 3}}$$
.

(H) Show that
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}.$$

CLS—14811 2 NRT/KS/19/5756