KNT/KW/16/6051-D

Bachelor of Arts (B.A.) Part-I Semester—I Examination

MATHEMATICS

Optional Paper-I

(M₁: Algebra and Trigonometry)

Time : Three Hours]

Maximum Marks : 60

- **N.B.** :— (1) Solve all the **FIVE** questions.
 - (2) All the questions carry equal marks.
 - (3) Question No. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Find the rank of matrix A by reducing it into the normal form, where

$$A = \begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

(B) Show that the following system of linear equations is consistent and hence solve the system of linear equations:

$$x + y + z = 3$$
, $x + 2y + 3z = 4$, $x + 4y + 9z = 6$.

OR

(C) Find the eigen values of the matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{array} \right]$$

Also find the eigen vector corresponding to only one eigen value.

6

(D) Show that the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ satisfies Cayley-Hamilton theorem and find A^{-1} .

1

NWN—8906

(Contd.)

UNIT-II

2. (A) Solve the equation $x^3 - 3x^2 + 4 = 0$, two of its roots being equal.

(B) If α , β , γ be the roots of the cubic $x^3 + px^2 + qx + r = 0$, then calculate the values of the symmetric functions :

- (i) $\Sigma \alpha^2$
- (ii) $\Sigma \alpha^2 \beta^2$
- (iii) $\Sigma \frac{1}{\alpha}$

OR

- (C) Solve the equation $x^3 + x^2 16x + 20 = 0$ by Cardon's method.
- (D) Solve the biquadratic equation $x^4 + 12x 5 = 0$ by Ferrari's method.

UNIT-III

3. (A) If $\cos\alpha + \cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \sin\gamma = 0$. Then prove that :

 $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ and

$$\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma).$$

(B) Find all the values of $(1)^{\frac{1}{4}}$.

OR

(C) Prove that:

(i) If $\sinh y = x \ \text{then} \ y = \sinh^{-1} x = \log \left(x + \sqrt{x^2 + 1} \right)$ and

(ii) If
$$\cosh y = x \text{ then } y = \cosh^{-1} x = \log(x + \sqrt{x^2 - 1})$$

(D) Prove that:

(i) $\text{Log } (-x) = (2n + 1) \pi i + \log x \text{ and }$

(ii)
$$\text{Log } (xi) = (2n + \frac{1}{2}) \pi i + \log x.$$

NWN—8906 2 KNT/KW/16/6051–D

6

UNIT-IV

- 4. (A) Show that $G = \{1, -1, i, -i\}$ is an abelian group of order 4 with respect to multiplication. 6
 - (B) Prove that intersection of two subgroups of a group is a subgroup. Give an example to show that union of two subgroups is not necessarily a subgroup of a group.

OR

- (C) Prove that the order of a subgroup of finite group is a divisor of the order of the group.
- (D) (i) Find whether a permutation:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 2 & 4 & 3 & 1 & 7 \end{pmatrix}$$
 is even or odd.

(ii) If $f = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ b_1 & b_2 & b_3 & \dots & b_n \end{pmatrix}$, then prove that $f.f^{-1} = I$, where I is the identity permutation of degree n.

QUESTION-V

- 5. (A) Write the augmented matrix [A : B] for the system y + 2z = a, x + 2y + 3z = b, 3x + y + z = c.
 - (B) Give that characteristic equation of the matrix :

$$A = \begin{bmatrix} -2 & -1 \\ 5 & 4 \end{bmatrix} \text{ is } A^2 - 2A - 3I = 0. \text{ Find } A^{-1}.$$

- (C) Form an equation whose roots are 1, 2, 3.
- (D) Using Descarte's rule of signs show that an equation $x^3 9x^2 + 12x = 0$ has two positive real roots and one negative real root. 1½
- (E) Prove that $\cos(ix) = \cosh x$. $1\frac{1}{2}$
- (F) Prove that $\log(-1) = \pi i$.
- (G) Prove that the identity element of group is unique. 1½
- (H) Find all the right cosets of subgroup $H = \{1, -1\}$ in a multiplicative group $G = \{1, -1, i, -i\}$.

