Bachelor of Arts (B.A.) First Semester Examination
 STATISTICS (Probability Theory)
 Optional Paper-1

Time : Three Hours]
[Maximum Marks : 50
N.B. :-ALL questions are compulsory and carry equal marks.

1. (A) State and prove two Boole's inequalities.
(B) Give classical definition of probability. Explain its limitations.

OR
(E) State and prove addition law of probabilities for two events. Hence prove it for three events.
(F) Define with an example :
(i) Equally likely events
(ii) Mutually exclusive events

Write the sample space for the following random experiment :
(i) The tossing of three coins
(ii) Tossing of 2 dice
(iii) Coin and die are tossed together.
2. (A) Define partition of the sample space. State and prove Bayes theorem. In 2019, there will be three candidates for the position of Chief Minister Mr. A, Mr. B and Mr. C whose chances of getting the appointment are in the proportion $4: 2: 3$ respectively. The probability that Mr. A if selected will promote tourism in Maharashtra is 0.3 ; the probability of Mr. B and Mr. C doing the same are respectively 0.5 and 0.8 . What is the probability that tourism will be promoted in the State in 2019 ?

OR

(C) Define conditional probability. Show that it satisfies axioms of probability.
(D) If A and B are independent events then show that A and \bar{B} are also independent events.
(E) Show that the number of conditions required for mutual independence of ' n ' events is $2^{\mathrm{n}}-\mathrm{n}-1$.
(F) State and prove multiplicative law of probability for n events.
3. (A) The p.m.f of a r.v. x is

X	0	1	2
$p(x)$	$3 c$	$4 c$	$3 c$

where $\mathrm{C}>0$.

Find :
(i) Determine the value of C
(ii) Compute $\mathrm{P}(\mathrm{X}<1), \mathrm{P}(\mathrm{X}<2), \mathrm{P}(1<\mathrm{X} \leq 2)$
(iii) Describe the distribution function and draw its graph.
(B) Define mathematical expectation of a.r.v. State and prove its properties.

OR

(E) Define c dfor a random variable X. State and prove properties of c.d.f.. If X is a . r . v . with p.m.f.
$p(x)=\frac{x}{15}: x=1,2,3,4,5$
$=0$, elsewhere
(i) Find cumulative distribution function of X
(ii) Find $\mathrm{P}[\mathrm{X}=1$ or $\mathrm{X}=2]$
(iii) Find $\mathrm{P}\left\{\frac{1}{2}<\mathrm{X}<5 / 2 / \mathrm{X}>1\right\}$
(iv) Plot the graph of p.m.f. and c.d.f.
4. (A) Define skewness of a probability distribution of a r.v.. Explain the types of skewness with the help of figures. Define any two measures of skewness.
Let X be a r.v. with p d f

$$
\begin{aligned}
f(x) & =2(1-x) & & 0<x<1 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Find the first three raw moments about origin. Hence find μ_{2}, μ_{3} and β_{1}. Comment on the skewness of the probability distion of X.

OR

(E) Define the p.g.f. of a rex. Show how mean and variance can be calculated from it.
(F) Define the m.g.f. of a r.v. X. Show that it generates moments about origin.
(G) Define :
(i) Mean deviation from mean
(ii) Standard deviation
(iii) β_{1}
(H) Define :
(i) $\mathrm{r}^{\text {th }}$ raw moment about origin
(ii) $\mathrm{r}^{\text {th }}$ central moment
of a probability distribution of a r.v.
State the expression for the rth central moment in terms of raw moments about origin.
5. Solve any ten of the following :
(A) Define sure event
(B) A card is selected from the pack of cards. Find the probability that it is an ace.
(C) If A, B, C are three events. Express the following events in appropriate symbols :
(i) The event A occurs but not B .
(ii) Simultaneous occurrence of A, B and C .
(D) State Chebyshev's inequality.
(E) State the conditions for mutual independence of three events A, B and C .
(F) Two events A and B are such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{1}{2}$. Are A and B independent events?
(G) Let X be a r.v. with p.d.f.

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{x}) & =2(1-\mathrm{x}), & 0<\mathrm{x}<1 \\
& =0 & & \text { otherwise }
\end{array}
$$

Find $\mathrm{P}(\mathrm{X}>0.5)$.
(H) Let X be a r.v. with p.d.f.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =4 \mathrm{x}^{3}, & & 0<\mathrm{x}<1 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

Find $\mathrm{E}(\mathrm{X})$.

(I) Let X be a r.v. with $\mathrm{E}(\mathrm{x})=2$ and $\mathrm{V}(\mathrm{x})=8$. Find
(i) $\mathrm{E}[4 \mathrm{X}+5]$
(ii) $\mathrm{V}(3 \mathrm{X}+2]$
(J) Define quartiles for a continuous r.v. X .
(K) If p.d.f. of a r.v. X is
$\mathrm{f}(\mathrm{x})=\frac{1}{2} \quad-1<\mathrm{X}<1$
$=0 \quad$ elsewhere
find the median.
(L) Let X be a r.v. with p.m.f.

X	2	3	4
$\mathrm{P}(\mathrm{x})$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Find mode of the distribution.

