Bachelor of Arts (B.A.) Third Semester Examination
 MATHEMATICS

(Advanced Calculus, Sequence and Series)

Optional Paper-1
Time : Three Hours]
[Maximum Marks : 60
N.B. : - (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.
UNIT—I

1. (A) Expand $f(x, y)=x^{2}-x y+y^{2}$ in powers of $(x-2)$ and $(y-3)$.
(B) If f and g are continuous in $[a, b]$ and derivable in (a, b) with $g^{\prime}(x) \neq 0, \forall x \in[a, b]$, then prove that there exists $c \in(a, b)$ such that :

$$
\begin{equation*}
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} . \tag{6}
\end{equation*}
$$

OR

(C) Using Lagrange's mean value theorem, show that :

$$
\begin{equation*}
\frac{\mathrm{x}}{\mathrm{x}+1}<\log (1+\mathrm{x})<\mathrm{x}, \forall \mathrm{x}>0 \tag{6}
\end{equation*}
$$

(D) Let $\mathrm{f}: \mathrm{R}^{2} \rightarrow \mathrm{R}$ be defined by:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \tag{6}\\
0, & (x, y)=(0,0)
\end{array}\right.
$$

Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

UNIT-II

2. (A) Find the envelope of the curve $x \cos ^{3} \alpha+y \sin ^{3} \alpha=c$, where α is the parameter.
(B) Find the envelope of the lines $\frac{x}{a}+\frac{y}{b}=1$, where the parameters a and b are connected by the relation $\mathrm{a}+\mathrm{b}=\mathrm{c}$, c being constant.

OR

(C) Discuss the maximum or minimum values of u given by $u=x^{3}+y^{3}-3 a x y$.
(D) Determine the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $a x+b y+c z=p$.

UNIT-III

3. (A) If sequences $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ and $\left\langle\mathrm{z}_{\mathrm{n}}\right\rangle$ each converge to l if $\mathrm{x}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}}<\mathrm{z}_{\mathrm{n}}, \forall \mathrm{n} \in \mathrm{N}$, then prove that the sequence $\left\langle\mathrm{y}_{\mathrm{n}}\right\rangle$ also converges to l.
(B) Prove that the sequence $\left\langle x_{n}\right\rangle$, where $x_{n}=\frac{2 n+7}{3 n+2}$ is a monotonic increasing sequence. Further show that it is bounded and tends to the limit $\frac{2}{3}$.

OR

(C) Prove that a sequence $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ converges if an only if it is a Cauchy sequence.
(D) Evaluate :

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty}\left[\left(\frac{2}{1}\right)\left(\frac{3}{2}\right)^{2}\left(\frac{4}{3}\right)^{3} \cdots \cdots \cdots \cdot\left(\frac{\mathrm{n}+1}{\mathrm{n}}\right)^{\mathrm{n}}\right]^{\frac{1}{n}} . \tag{6}
\end{equation*}
$$

UNIT-IV

4. (A) Test for convergence of the series $\Sigma\left\{\left(n^{3}+1\right)^{1 / 3}-n\right\}$ by using comparison test.
(B) Test the convergence of the series $\sum \frac{n^{3}+\mathrm{a}}{2^{\mathrm{n}}+\mathrm{a}}$ by using Ratio test.

OR

(C) Test for convergence of the series $\sum \frac{(n+\sqrt{n})^{n}}{2^{n} \cdot n^{n+1}}$ by using Cauchy's Root test.
(D) Test the convergence of an alternating series :

$$
\begin{equation*}
\frac{2}{1}-\frac{3}{2^{2}}+\frac{4}{3^{2}}-\frac{5}{4^{2}}+\ldots \ldots \ldots \tag{6}
\end{equation*}
$$

QUESTION—V

5. (A) If in the Cauchy's mean value theorem $f(x)=e^{x}$ and $F(x)=e^{-x}$ for all $x \in[a, b]$, then show that c is arithmetic mean between a and b .
(B) Show that:

$$
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)
$$

where $f(x, y)=\frac{x^{2}+y^{2}}{x+y}$.
(C) Find the envelope of the curve $(x-\alpha)^{2}+y^{2}=4 \alpha, \alpha$ being the parameter.
(D) Prove that $(4 / 5,6 / 5)$ is a saddle point of the function $z=x^{2}+y^{2}-3 x y+2 x$. $11 / 2$
(E) Show that the sequence $\left\langle\mathrm{n}^{2}\right\rangle$ is bounded below by 1 and not bounded above. $11 / 2$
(F) Find $\mathrm{n}_{0} \in \mathrm{~N}$ such that:

$$
\left|\frac{2 \mathrm{n}}{\mathrm{n}+3}-2\right|<\frac{1}{5} \text { for all } \mathrm{n} \geq \mathrm{n}_{0} .
$$

(G) Test the convergence of the series whose $\mathrm{n}^{\text {th }}$ term is $\frac{3 \mathrm{n}-1}{2^{\mathrm{n}}}$.
(H) Test the convergence of the series $\sum\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}^{2}}$, by root test.

