NRT/KS/19/5903

Bachelor of Arts (B.A.) Fourth Semester Examination STATISTICS (STATISTICAL INFERENCE) Optional Paper—1

Time: Three Hours] [Maximum Marks: 50

N.B.:— **ALL** questions are compulsory and carry equal marks.

- 1. (A) Define :
 - (i) an unbiased estimator
 - (ii) UMVUE
 - (iii) Efficiency of an estimator.

Does an unbiased estimator always exist? Justify the answer.

- (B) X_1 , X_2 , X_3 is a random sample of size 3 from a population with mean μ and variance σ^2 , T_1 , T_2 and T_3 are estimators of μ such that :
 - (i) $T_1 = X_1 + X_2 X_3$
 - (ii) $T_2 = 2X_1 + 3X_2 4X_3$ and

(iii)
$$T_3 = \frac{1}{3}(aX_1 + X_2 + X_3)$$

- (a) Are T_1 and T_2 unbiased estimators of μ ?
- (b) Find the value of 'a' such that T_3 is unbiased estimator of μ .
- (c) Find the best estimator among T_1 , T_2 and T_3 .

5+5

OR

- (E) Define:
 - (i) Simple and composite hypothesis.
 - (ii) Null and alternative hypothesis.
 - (iii) Significant and insignificant difference.
 - (iv) Critical value.
 - (v) Level of significance.
 - (vi) Type I and Type II errors.
 - (vii) Power of the test.

Let X be a r.v. with p.m.f. p(x). Let $H_0: X \sim p_0(x)$ and $H_1: X \sim p_1(x)$.

0 1 2 3 0.4 0.3 0.10.15 0.05 $p_1(x)$ $p_0(x)$.02 .03 .05 0.7 0.2

If critical region is {0, 1}, find probability of type I error, type II error and power of the test.

- 2. (A) Describe t test for testing:
 - (i) the equality of two population means, when the population variance is unknown, and
 - (ii) the difference of means for a paired sample drawn from bivariate normal population.

Also construct $100 (1 - \alpha)\%$ confidence interval for the difference of means in the above case (i).

OR

- (E) Explain t-test for testing the significance of specified value of population mean, when population variance is unknown. Also construct $100(1-\alpha)\%$ confidence interval for the population mean.
- (F) Explain F-test for testing equality of population variances when means are known. Also construct $100(1 \alpha)\%$ confidence interval for the ratio of variances when the means are known.
- 3. (A) Explain Chi-square test for testing the significance of specified value of the population variance, when population mean is known and construct $100(1-\alpha)\%$ confidence interval for population variance under the above case.
 - (B) Explain Chi-square test for homogeneity of populations.

5 + 5

OR

- (E) Describe Chi-square test for independence of attributes in r × s contingency table. Explain the calculation of degrees of freedom in the above case. Derive Brandt-Snedecor formula for Chi-square.
- 4. (A) Describe large sample test for testing:
 - (i) the significance of specified value of population mean when population variance is unknown.
 - (ii) the equality of two population means when population variances are unknown.

Also construct $100 (1 - \alpha)\%$ confidence interval for the difference of two population means under case(i) and case(ii).

OR

- (E) Describe large sample tests for testing :
 - (i) the significance of population proportion.
 - (ii) the equality of two population proportions.

Also develop 100 $(1 - \alpha)$ % confidence interval for the difference of proportions.

- 5. Solve any **TEN** from the following :—
 - (A) Define p value.
 - (B) State Carmer Rao inequality.
 - (C) Define an interval estimator for a parameter.
 - (D) State assumptions for small sample tests.
 - (E) State the test statistic used for testing the significance of the sample correlation coefficient.
 - (F) If $P[|t| > t_{\alpha/2}] = 0.95$, what is the $P[t < -t_{\alpha/2}]$?
 - (G) State the conditions for validity of Chi-square test for testing the goodness of fit of a distribution.
 - (H) What is meant by degrees of freedom?
 - (I) Explain the need of Yates correction of continuity in 2×2 contingency table.
 - (J) State Central limit theorem.
 - (K) State the assumptions for large sample tests.
 - (L) State the $100(1-\alpha)\%$ confidence interval for the population proportion in case of large sample. $1\times10=10$

CLS—287 2 NRT/KS/19/5903