Bachelor of Arts (B.A.) Fifth Semester Examination
 MATHEMATICS (ANALYSIS)

Optional Paper-1
Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Find Fourier series of the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}\frac{-\pi}{2} & , \quad-\pi \leq \mathrm{x}<0 \tag{6}\\ \frac{\pi}{2} & ,\end{cases}
$$

(B) Find Fourier series expansion of :

$$
\begin{equation*}
f(x)=|x| \text { in }-\pi \leq x \leq \pi . \tag{6}
\end{equation*}
$$

OR

(C) Find sine series of $f(x)=X^{2}$ in $0 \leq x \leq \pi$.
(D) Find Fourier series of the function :

$$
f(x)= \begin{cases}-3, & -2 \leq x<0 \tag{6}\\ 3, & 0 \leq x \leq 2\end{cases}
$$

UNIT-II

2. (A) If P is a partition of $[a, b]$ and $f(x)$ is bounded with bounds m, M such that $m \leq f(x) \leq M$, then prove that :
$\mathrm{m}(\mathrm{b}-\mathrm{a}) \leq \mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{M}(\mathrm{b}-\mathrm{a})$ where α is monotonic increasing function on [a, b].
(B) If f is monotonic on $[\mathrm{a}, \mathrm{b}]$ and if α is continuous on $[\mathrm{a}, \mathrm{b}]$, then prove that $\mathrm{f} \in \mathrm{R}(\alpha)$, where $\alpha(\mathrm{x})$ is monotonic increasing on $[\mathrm{a}, \mathrm{b}]$.

OR
(C) If P^{*} is a refinement of P , then prove that $\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}, \alpha\right)$.
(D) If $f \in R(\alpha)$ on $[a, b]$ and $|f(x)| \leq K$ on $[a, b]$, then prove that :

$$
\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f} \mathrm{~d} \alpha\right| \leq \mathrm{K}\{\alpha(\mathrm{~b})-\alpha(\mathrm{a})\}
$$

UNIT—III

3. (A) If $f(z)=u+i v$ is analytic function and $z=r e^{i \theta}$, then show that Cauchy-Riemann equations are : $\frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$.
(B) If $u=x^{2}-y^{2}, v=-\frac{y}{x^{2}+y^{2}}$, then show that both u and v satisfy Laplace's equation but $\mathrm{u}+\mathrm{iv}$ is not analytic function of z .

OR

(C) Prove that $u=y^{3}-3 x^{2} y$ is harmonic. Also find harmonic conjugate v and analytic function $f(z)=u+i v$.
(D) If $f(z)=u+i v$ is an analytic function in D, prove that the curves $\mathrm{u}=$ const., $\mathrm{v}=$ const. form orthogonal families of curves.

UNIT-IV

4. (A) Prove that every bilinear transformation is a combination of translation, rgeation, magnification and inversion.
(B) Determine the region R in w-plane corresponding to the region in z-plane bounded by the lines $x=0, y=0, x+y=1$ under the transformation $=\mathrm{e}^{\pi / 4}$.

OR

(C) Prove that if there is only one fixed point $z=p$, then bilinear transformation $w=\frac{a z+b}{c z+d}$ can be put in normal form :

$$
\begin{equation*}
\frac{1}{\mathrm{w}-\mathrm{p}}=\frac{1}{\mathrm{z}-\mathrm{p}}+\mathrm{k} . \tag{6}
\end{equation*}
$$

(D) Find the fixed points and normal form of $w=\frac{(2+i) z-2}{z+i}$. Show that the transformation is loxodromic.

Question-V

5. (A) Let $\mathrm{f}(\mathrm{x})=\log \left(\frac{1-\mathrm{x}}{1+\mathrm{x}}\right) \mathrm{x} \in\left(-\frac{1}{2}, \frac{1}{2}\right)$. Verify whether function f is even or odd. $11 / 2$
(B) Find Fourier series of $f(x)=\cos x$ in $-\pi \leq x \leq \pi$.
(C) Define $\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)$ and $\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha)$ where symbols have usual meaning. $11 / 2$
(D) Let $\alpha(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ be a monotonic increasing function then find $\sum_{\mathrm{i}=1}^{\mathrm{n}} \Delta \alpha_{\mathrm{i}} . \quad 11 / 2$
(E) Show that the function $f(z)=x^{2}+i y^{2}$ is not analytic. $11 / 2$
(F) Show that $\mathrm{u}=\frac{1}{2} \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ is harmonic.
(G) Is the transform $w=\frac{z+2}{2 z+4}$ bilinear ? Explain.
(H) Find the fixed points of $w=\frac{z-1}{z+1}$.
