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Bachelor of Arts (B.A.) Fifth Semester Examination

MATHEMATICS (ANALYSIS)

Optional Paper—1

Time : Three Hours] [Maximum Marks : 60

N.B. :— (1) Solve all the FIVE questions.

(2) All questions carry equal marks.

(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative

in full.
UNIT—I

1. (A) Find Fourier series of the function :

f(x) = 



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(B) Find Fourier series expansion of :

f(x) = | x | in –π  ≤ x ≤ π. 6

OR

(C) Find sine series of f(x) = x2 in 0 ≤ x ≤ π . 6

(D) Find Fourier series of the function :

f(x) = 



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UNIT—II

2. (A) If P is a partition of [a, b] and f(x) is bounded with bounds m, M such that m ≤ f(x) ≤ M,
then prove that :

m(b – a) ≤ L(P,f,α ) ≤ U(P,f,α) ≤ M(b – a) where α is monotonic increasing function on
[a, b]. 6

(B) If f is monotonic on [a, b] and if α  is continuous on [a, b], then prove that f ∈ R(α), where
α(x) is monotonic increasing on [a,b]. 6

OR

(C) If P* is a refinement of P, then prove that L(P,f,α) ≤ L(P*, f, α). 6

(D) If f ∈ R(α ) on [a, b] and |f(x)| ≤ K on [a, b], then prove that :

)}a()b({Kdf
b

a

α−α≤α∫ . 6
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UNIT—III

3. (A) If f(z) = u + iv is analytic function and z = reiθ, then show that Cauchy-Riemann equations

are : 
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(B) If u = x2 –  y2, v = – 22 yx
y
+

, then show that both u and v satisfy Laplace’s equation but

u + iv is not analytic function of z. 6
OR

(C) Prove that u = y3 – 3x2y is harmonic. Also find harmonic conjugate v and analytic function
f(z) = u + iv. 6

(D) If f(z) = u + iv is an analytic function in D, prove that the curves
u = const., v = const. form orthogonal families of curves. 6

UNIT—IV
4. (A) Prove that every bilinear transformation is a combination of translation, rotation, magnification

and inversion. 6
(B) Determine the region R' in w-plane corresponding to the region R in z-plane bounded by

the lines x = 0, y = 0, x + y = 1 under the transformation w = z eiπ/4 . 6
OR

(C) Prove that if there is only one fixed point z = p, then the bilinear transformation w = 
dcz
baz

+
+

can be put in normal form :
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(D) Find the fixed points and normal form of w = 
iz

2z)i2(
+

−+
. Show that the transformation

is loxodromic. 6

Question—V

5. (A) Let f(x) = log 
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. Verify whether function f is even or odd. 1½

(B) Find Fourier series of f(x) = cos x in –π  ≤ x ≤  π. 1½
(C) Define U(P, f, α) and L(P, f, α) where symbols have usual meaning. 1½

(D) Let α(x) = x, ∀ x ∈ [a,b] be a monotonic increasing function then find ∑
=

α∆
n

1i
i . 1½

(E) Show that the function f(z) = x2+iy2 is not analytic. 1½

(F) Show that u = )yx(log
2
1 22 +  is harmonic. 1½

(G) Is the transform w = 
4z2

2z
+

+
 bilinear ? Explain. 1½

(H) Find the fixed points of w = 
1z
1z

+
−

. 1½
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