Bachelor of Arts (B.A.) Sixth Semester Examination

MATHEMATICS (Discrete Mathematics and Elementary Number Theory) (Optional Paper) Optional Paper-2

Time : Three Hours]
[Maximum Marks : 60
N.B. : - (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Let R be a binary relation on the set of all positive integers such that $R=\{(a, b) /(a-b)$ is divisible by a positive integer m . Prove that R is an equivalence relation.
(B) Define the followings :
(i) Complete lattice
(ii) Bounds of a lattice
(iii) Bounded lattice
(iv) Complemented lattice
(v) Distributive lattice
(vi) Modular lattice.

OR

(C) Prove that every chain is a distributive lattice.
(D) Show that the following digraphs are isomorphic:

UNIT-II
2. (A) If g is the g.c.d. of b and i.e. $(b, c)=g$, then prove that there exists integers x_{0} and y_{0} such that $g=b x_{o}+e y_{o}$.
(B) Let f denote a polynomial with integral coefficients of $\mathrm{a} \equiv \mathrm{b}(\bmod m)$ then prove that $\mathrm{f}(\mathrm{a}) \equiv \mathrm{f}(\mathrm{b})(\bmod \mathrm{m})$.

OR

(C) Find all the solutions of the linear congruence : $20 \mathrm{x} \equiv 35(\bmod 105)$.
(D) If $(a, m)=1$, then prove that $a^{\phi(m)}=1(\bmod m)$.

UNIT-III

3. (A) Prove that 3 is a quadratic residue of 13 but a quadratic non-residue of 7 .
(B) Is the congruence $x^{2} \equiv-2(\bmod 59)$ solvable ? If so, then solve it.

OR

(C) Prove that $\sum_{j=1}^{p-1}\left(\frac{j}{p}\right)=0, p$ being an odd prime.
(D) Evaluate :

$$
\left(\frac{45}{71}\right) .
$$

UNIT-IV

4. (A) Find all the solutions in positive integer : $5 x+3 y=52$.
(B) Solve the equation :

$$
\begin{equation*}
x+2 y+3 z=10 \tag{6}
\end{equation*}
$$

OR

(C) Find all the Pythagorian Triples whose terms form an A.P.
(D) Construct Farey sequence F_{5}, if $\mathrm{F}_{1}=\left\{\frac{0}{1}, \frac{1}{1}\right\}$.

QUESTION-V

5. (A) Prove that in a lattice $(\mathrm{L}, *, \oplus), \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$ and $\mathrm{a} \oplus \mathrm{b}=\mathrm{b} \oplus \mathrm{a}$.
(B) Draw Hasse-diagram of $\{3,5,15\}$. $11 / 2$
(C) Find g.c.d. of 1819 and 3 . $11 / 2$
(D) If $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then prove that $\mathrm{ac} \equiv \mathrm{bc}(\bmod m \mathrm{~m})$ for $\mathrm{c}>0$.
(E) Prove that $\left(\frac{\mathrm{a}^{2}}{\mathrm{p}}\right)=1$, p prime.
(F) Solve :

$$
x^{2} \equiv 81(\bmod 97)
$$

(G) Show that $2 \mathrm{x}+3 \mathrm{y}=4$ is solvable.
(H) Define a Primitive Pythagorian Triple.

