NRT/KS/19/5975

Bachelor of Arts (B.A.) Sixth Semester Examination MATHEMATICS (Special Theory of Relativity) (Optional Paper)
 Optional Paper-2

Time : Three Hours]
[Maximum Marks : 60
N.B. : (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Derive general and simple Galilean transformations, considering two inertial frames S and S^{\prime}. Also obtain their inverse transformations.
(B) Show that the three dimensional volume element dxdydz is not Lorentz invariant, but the four dimensional volume element dxdydzdt is Lorentz invariant.

OR

(C) Explain Lorentz-Fitz Gerald contraction hypothesis. Show that Lorentz-Fitz Gerald contraction hypothesis implies that there is no fringe shift in Michelson-Morley experiment.
(D) Prove that $\nabla^{2}-\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2}}{\partial \mathrm{t}^{2}}$ is invariant under special Lorentz transformation.

UNIT-II

2. (A) Obtain the transformation equations for acceleration of a particle.
(B) Explain the phenomenon of time dilation in special theory of relativity. If a clock is moving with velocity $\mathrm{c} / 3$, then how much time it will loose in an hour ?

OR

(C) Prove that the simultaneity has only a relative and not an absolute meaning in special relativity.
(D) The space-time coordinates of two events measured in a frame S are ($\mathrm{x}_{\mathrm{o}}, 0,0, \mathrm{x}_{\mathrm{o}} / \mathrm{c}$) and ($2 \mathrm{x}_{\mathrm{o}}, 0,0, \mathrm{x}_{\mathrm{o}} / 2 \mathrm{c}$). Find :
(i) the velocity of an inertial frame S^{\prime} relative to S where these events are simultaneous.
(ii) the time t at which both events occur in the frame S^{\prime}.

UNIT-III

3. (A) Define symmetric and skew symmetric contravariant tensors of rank 2. Show that any tensor of the rank 2 (covariant or contravariant) may be expressed as the sum of a symmetric and skew symmetric tensors.
(B) Show that Ars is a tensor if its inner product with an arbitrary mixed tensor $\mathrm{B}_{\mathrm{t}}^{\mathrm{s}}$ is a tensor.
(C) Find g and $g^{i j}$ corresponding to the line element:

$$
d s^{2}=d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2}
$$

in terms of cylindrical coordinates ρ, ϕ, z.
(D) Define Four tensor, show that :

$$
\begin{equation*}
\mathrm{T}^{\prime 41}=\alpha^{2}\left\{-\frac{\mathrm{v}}{\mathrm{c}} \mathrm{~T}^{11}+\mathrm{T}^{41}-\frac{\mathrm{v}}{\mathrm{c}} \mathrm{~T}^{44}+\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}} \mathrm{~T}^{14}\right\} \tag{6}
\end{equation*}
$$

UNIT-IV

4. (A) Obtain the mass energy equivalence $E=\mathrm{mc}^{2}$.
(B) Define the four velocity and four acceleration of a particle. Show that four velocity and four acceleration are mutually orthogonal.

OR

(C) State the Maxwell's equations of electromagnetic theory in vacuum. Derive the wave equation for the propagation of the electric field strength $\overline{\mathrm{E}}$ and magnetic field strength $\overline{\mathrm{H}}$ in free space with velocity of light.
(D) Explain the term four potential and obtain the transformation equations of the electromagnetic four potential vector under Lorentz transformations.

QUESTION—V

5. (A) State the fundamental postulates of special relativity.
(B) Show that the circle $x^{\prime 2}+y^{\prime 2}=a^{2}$ in S^{\prime} is measured to be an ellipse in S if S^{\prime} moves with uniform velocity relative to S.
(C) Suppose the half-life of a certain particle is 10^{-7} second, when it is at rest, calculate its half life when it is travelling with a speed of 0.8 c .
(D) Derive Einstein's velocity addition law. $11 / 2$
(E) Prove that Kronecker delta δ_{j}^{i} is a mixed tensor of rank two. $11 / 2$
(F) Define time-like, space-like and light-like intervals. $11 / 2$
(G) Define four velocity and four acceleration.
(H) Prove that:

$$
p^{2}=\frac{E^{2}}{c^{2}}-m_{o}^{2} c^{2}
$$

