5

5

Bachelor of Computer Application (B.C.A.) Semester—II (C.B.S.) Examination **DISCRETE MATHEMATICS—II** Paper—IV

Time: Three Hours] [Maximum Marks: 50

N.B.:— (1) **ALL** questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagram wherever necessary.

EITHER

- 1. (a) Give the power set of following:
 - (i) $\{\phi, 1\}$

(ii) $\{a, b, c\}$ 5

(b) Show that for any two finite and non-empty sets A and B;

$$A - (A \cap B) = A - B.$$

OR

- (c) What do you mean by symmetric difference? Explain with example. Also draw the Venn diagram. 5
- (d) Let $A = \{a, b, c, d\}$. Let R be the relation on A, that has the matrix:

$$\mathbf{M}_{\mathbf{R}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

construct the diagraph of R and list the in-degree and out-degree of all vertices.

EITHER

(a) Prove by mathematical induction: 2.

$$1 + 2 + 3 + \dots + n = n(n + 1)/2.$$

(b) Explain Pigeon-hole principle.

OR

- (c) What do you mean by function? Also explain the following functions:
 - (i) One to one
 - (ii) Onto
 - (iii) Inverse function.

5

(d) Find an explicit formula for the sequence defined by $C_n = 3C_{n-1} - 2C_{n-2}$ with initial conditions $C_1 = 5$ and $C_2 = 3$.

EITHER

- (a) For Boolean Polynomial $P(x, y, z) = (x \land y) \lor (y \land z')$. Construct the truth table and show 3. the Polynomial by logic diagram.
 - (b) Let $S = \{a, b, c\}$ and A = P(S). Draw the Hasse diagram of the Poset with partial ordering of set inclusion. 5

OR

- (c) Let L be a bounded distribution lattice. Prove that if complement of a ε L exists, then it 5 is unique.
- (d) Let G be the set of all non-zero real numbers and let $a * b = \frac{ab}{2}$; show that (G, *) is an abelian group. 5

POY-25207 (Contd.) 1

EITHER

- 4. (a) Explain the following:
 - (i) labelled tree

(ii) undirected tree. 5

(b) Let number of edges of graph G be m, then prove that G has a Hamiltonian circuit, if $m \ge \frac{1}{2}(n^2 - 3n + 6)$, where n is the number of vertices.

OR

- (c) Explain with the help of example:
 - (i) directed graph
 - (ii) null graph
 - (iii) complete graph
 - (iv) linear graph
 - (v) weighted graph. 5
- (d) Obtain the adjancy matrix of the diagraph given below.

5

5. Attempt ALL:

(a) What are the properties of binary relation? Explain.

- $2\frac{1}{2}$
- (b) How many words can be made by using the letters of the word "BANANA", taken all at a time?
- (c) For the following graph; find :
 - (i) vertex set
 - (ii) edge set
 - (iii) pendent vertex
 - (iv) loop
 - (v) isolated vertex.

 $2\frac{1}{2}$

(d) Define:

- (i) Distributive lattice.
- (ii) Complemented lattice.

 $2\frac{1}{2}$