Bachelor of Computer Application (B.C.A.) Semester-II (C.B.S.) Examination
 DISCRETE MATHEMATICS-II
 Paper-IV

[Maximum Marks : 50
Time : Three Hours]
N.B. :- (1) ALL questions are compulsory and carry equal marks.
(2) Draw neat and labelled diagram wherever necessary.

EITHER

1. (a) Give the power set of following :
(i) $\{\phi, 1\}$
(ii) $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(b) Show that for any two finite and non-empty sets A and B;

$$
\mathrm{A}-(\mathrm{A} \cap \mathrm{~B})=\mathrm{A}-\mathrm{B}
$$

OR
(c) What do you mean by symmetric difference ? Explain with example. Also draw the Venn diagram.
(d) Let $A=\{a, b, c, d\}$. Let R be the relation on A, that has the matrix :

$$
\mathrm{M}_{\mathrm{R}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

construct the diagraph of R and list the in-degree and out-degree of all vertices.

EITHER

2. (a) Prove by mathematical induction :
$1+2+3+\ldots \ldots .+n=n(n+1) / 2 . \quad 5$
(b) Explain Pigeon-hole principle. 5

OR
(c) What do you mean by function ? Also explain the following functions :
(i) One to one
(ii) Onto
(iii) Inverse function.
(d) Find an explicit formula for the sequence defined by $C_{n}=3 C_{n-1}-2 C_{n-2}$ with initial conditions $C_{1}=5$ and $C_{2}=3$.

EITHER

3. (a) For Boolean Polynomial $P(x, y, z)=(x \wedge y) \vee\left(y \wedge z^{\prime}\right)$. Construct the truth table and show the Polynomial by logic diagram.
(b) Let $S=\{a, b, c\}$ and $A=P(S)$. Draw the Hasse diagram of the Poset with partial ordering of set inclusion.
OR
(c) Let L be a bounded distribution lattice. Prove that if complement of a $\varepsilon \mathrm{L}$ exists, then it is unique.
(d) Let G be the set of all non-zero real numbers and let $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{2}$; show that $(\mathrm{G}, *)$ is an abelian group.

EITHER

4. (a) Explain the following :
(i) labelled tree
(ii) undirected tree.
(b) Let number of edges of graph G be m, then prove that G has a Hamiltonian circuit, if $m \geq \frac{1}{2}\left(n^{2}-3 n+6\right)$, where n is the number of vertices.

OR

(c) Explain with the help of example :
(i) directed graph
(ii) null graph
(iii) complete graph
(iv) linear graph
(v) weighted graph.
(d) Obtain the adjancy matrix of the diagraph given below.

5. Attempt ALL :
(a) What are the properties of binary relation ? Explain.
(b) How many words can be made by using the letters of the word "BANANA", taken all at a time ?
(c) For the following graph; find :
(i) vertex set
(ii) edge set
(iii) pendent vertex
(iv) loop
(v) isolated vertex.

(d) Define :
(i) Distributive lattice.
(ii) Complemented lattice.

