Bachelor of Computer Application (B.C.A.) Semester-III Examination
 DIGITAL ELECTRONICS-I
 Paper-VI

Time : Three Hours]
[Maximum Marks : 50
Note :-(1) All questions are compulsory and carry equal marks.
(2) Draw neat and labelled diagram wherever necessary.

EITHER

1. (a) Explain double-dabble method with suitable examples.
(b) Solve the following :
(i) $(\mathrm{C} 7 \mathrm{D} 8)_{16}=(?)_{10}$
(ii) $(21.6)_{10}=(?)_{2}$

OR
(c) Write a short note on alphanumeric code.
(d) What is Excess-3 code ? Perform the following addition using excess-3 code :
(i) $11+22$
(ii) $36+41$
5

EITHER

2. (a) How are real numbers represented ? Explain. 5
(b) Explain the various methods to represent a negative perform the following subtraction using 1'S complement method:

$$
(10111)_{2}-(101)_{2}
$$

OR

(c) Explain Binary subtraction by 2 'S complement method with suitable examples.
(d) Explain the following with examples :
(i) Underflow of data
(ii) Range of data
(iii) Mantissa of data.

EITHER
3. (a) Why NAND and NOR gates are called universal building blocks ? Explain with logic diagram.
(b) Explain AND, OR and NOT gate with their truth table and logic symbol. 5

OR
(c) Explain the construction and working of EX-NOR gate using basic gates.
(d) Differentiate between basic gates and universal building blocks.

EITHER

4. (a) State and prove De-Morgen's theorem.5
(b) Prove the following identities using Boolean laws :
(i) $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})=\mathrm{A}+\mathrm{BC}$
(ii) $\mathrm{A}+\overline{\mathrm{A}} \cdot \mathrm{B}=\mathrm{A}+\mathrm{B}$
5

OR
(c) What is K-map ? What are advantages and disadvantages of K-map ?
(d) Explain the terms :
(i) Sum of product
(ii) Product of sum with reference to K-map with example.
5. (a) Convert the Hexadecimal number (57 B .8) V_{16} into equivalent binary number. $2 \frac{1}{2}$
(b) How are positive numbers represented? Explain.
(c) Draw the logic diagram of EX-OR gate and give its truth table. $2 \frac{1122}{2}$
(d) Prove that:

$$
(\mathrm{A}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{B}})(\overline{\mathrm{A}}+\mathrm{C})=\mathrm{AC} \quad 21 / 2
$$

