Bachelor of Computer Application (B.C.A) Semester-IV Examination
 OPERATIONS RESEARCH-II
 Paper-IV

Time : 3 Hours]
[Maximum Marks : 50
N.B. :- (1) All questions are compulsory and carry equal marks.
(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (A) State the rules for determining a saddle point.

Write down the conditions for :
(i) A game is said to be fair
(ii) A game is strictly determinable.
(B) Solve the following game using dominance properties.

Player B

	II	II	III	$\mathbf{\text { IV }}$
I	3	2	4	0
Player A III	3	4	2	4
III	4	2	4	0
IV	0	4	0	8

OR
(C) Solve the following game graphically :

Player B

Player A $\left[\begin{array}{ccc}3 & -3 & 4 \\ -1 & 1 & -3\end{array}\right]$
(D) Explain decision tree with suitable example.

EITHER

2. (A) Define:
(i) Event
(ii) Activity
(iii) Looping
(iv) Dangling
(B) Draw the network and find the project completion time for following data:

Activity Preceding Activities Activity Duration (in days)
A
B \qquad
C 6

D
A, B
5
E
A, B 7
F
C, D, E
6
G
C, D, E

OR

(C) Explain different time estimates made for each activity for PERT Network. Also write formula for standard deviation and variance.
(D) State the differences between CPM and PERT.

EITHER

3. (A) Define order cycle. Explain types of inventory review system.
(B) Find the optimum order quantity for a product for which the price break are as follows :

Quantity Unit cost (Rs.)

$0 \leq \mathrm{Q} 1<500$	10.00
$500 \leq \mathrm{Q}_{2}<750$	9.25
$750 \leq \mathrm{Q}_{3}$	8.75

The monthly demand for the product is 200 units, the cost of storage is 2% of the unit cost and the cost of ordering is Rs. 350.

OR

(C) A contractor has to supply 12000 bearings per day to an automobile manufacturer. He finds that, when he starts a production run, he can produce 25000 bearings per day. The cost of holding a bearing in stock for one year is Rs. 2 and the set-up cost of production run is Rs. 1800. How frequently should production run can be made ?
(D) Derive an EOQ formula for deterministic inventory problems with no shortages.

EITHER

4. (A) Explain operating characteristics of queuing system.
(B) Customer arrive at a sales counter managed by a single person according to a Poisson process with a mean rate of 20 per hours. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the average waiting time of a customer.

OR

(C) A barber shop has two barbers and three chairs for waiting customers. Assume that customer arrive in a Poisson fashion at a rate of 5 per hour and that each barber services customers according to an exponential distribution with mean of 15 minutes. Further, if a customer arrives and there are no empty chain in the shops he will leave. Find the steady-state probabilities. What is the probability that the shop is empty? What is the expected number of customers in the shop?
(D) Explain Kendall's notation for representing queuing models with transient state and steady states of the system. 5
5. (A) Define:
(i) Two person zero sum game
(ii) Value of the game
(B) Write down the rules for network construction. $2 \frac{1}{2}$
(C) Write a note on Economic Order Quantity. 2½
$\begin{array}{ll}\text { (D) Explain Queuing system with a suitable diagram. } & 21 / 2\end{array}$

