MXP-O—4108

4

5. A	ttempt ALL:		TKN/KS/16/5977
(a) Define two-way finite automata.	21/2	
(b) What is Regular Set ?	21/2	Bachelor of Computer Application (B.C.A.)
(c) What is ambiguous grammar ?	21/2	Semester—IV (C.B.S.) Examination THEORY OF COMPUTATION
(d) Define PDA.	2½	Paper—III
			Time—Three Hours] [Maximum Marks—50 Note:—(1) All questions are compulsory and carry equal marks. (2) Draw neat and labelled diagram wherever necessary.
			EITHER
			1. (a) Build a DFA for the following language.
		line.com	$L = \{w \mid w \text{ is a binary string that contains } 01 \text{ of a substring}\}$
		W.Hininghine.com	(b) Define NFA and prove equivalence of DFA and NFA.
	A ST	4.	OR
			(c) Build a DFA for the following language over the alphabets {0, 1}: of the set of all strings such that each block of five consecutive symbols contains at least two 0's.

MXP-O—4108

(Contd.)

825

	0	1
$\rightarrow p$	{p, q} {r} {s}	{p}
q	{r}	{r}
r	{s}	ф
*S	{s}	{s}

EITHER

- 2. (a) State and prove the theorem of pumping lemma for regular set.
 - (b) Prove the context free grammar accepts the word palindrome over the alphabets {0, 1}.

OR

- (c) Explain the closure properties of regular set.
- (d) Define CFG and give applications of CFG and CFL.

EITHER

- 3. (a) Explain the process of eliminating useless symbols from CFG. 5
- MXP-O—4108 2 (Contd.)

(b) Define CNF. Convert following grammar into CNF:

$$S \Rightarrow AS \mid BABC$$
 $A \Rightarrow A1 \mid 0A1 \mid 01$
 $B \Rightarrow 0B \mid 0$

C ⇒ 1C | 1

5

OR

- (c) Define GNF and closer properties of CFL.
- (d) Explain pumping lemma for CFG. 5

EITHER

- 4. (a) Design a PDA for $L_{yy}R$. 5
 - (b) Convert the grammer

$$S \, \to \, 0S1 \, \mid \, A$$

$$A \rightarrow 1A0 \mid S \mid \in$$

to a PDA that accepts the same language by empty stock.

OR

- (c) Give the instantaneous description of PDA. 5
- (d) Explain the process of converting grammar to PDA. 5

MXP-O—4108 3 (Contd.)