Faculty of Engineering & Technology First Semester B.E. (C.B.S.) Examination ENGINEERING PHYSICS

Paper-II

Time: Two Hours]

[Maximum Marks: 40

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry equal marks.
- (2) Solve FOUR questions as follows:
 - (i) Q. No. 1 OR Q. No. 2
 - (ii) Q. No. 3 OR Q. No. 4 💸
 - (iii) Q. No. 5 OR Q. No. 6
 - (iv) Q. No. 7 OR Q. No. 8
- (3) Assume suitable data wherever necessary.
- (4) Use of non-programmable electronic calculator is permitted.

List of Constants

Planck's Constant "h" = 6.63×10^{-34} J.S

Velocity of Light "c" = 3×10^8 m/s

Charge on Electron "e" = 1.602×10^{-19} C

Mass of Electron "m" = 9.11×10^{-31} kg.

MHB-45247

(Contd.)

1.	(a)	of X-ray photon when it is settled
	(b)	What are the causes of existence of modified and un-modified components in Compton
	(c)	A photon of energy 1 MeV is scattered through 90° by a free electron. Calculate the change in energy of photon and electron after the interaction.
Ť		3
		OR
2.	(a)	State the properties of matter waves. 2
\	(b)	Discuss in detail an experiment that confirms the
- 1	• •	existence of de-Broglie matter waves 4
	(e)	What would be the de-Broglie wavelength associated with:
		and a constant speed as
}		(i) 2000 kg car naving a constant speed of 25 m/s
-		1 in a speed of 10 m/
\		Give your conclusion.
3.	(a)	What is the Uncertainty Principle? Is this principle
		the outcome of the wave description of a
		particle? Describe diffraction of Electrons by
		Single Slit Experiment to prove its validity. 5
	(b)	Show that the phase velocity of a de-Broglie wave
		is greater than the velocity of light, but group
•		velocity is equal to velocity of the particle with
		which the wave is associated.
	(c)	Calculate the minimum uncertainty in the velocity
•		of an electron confined to a box of 10^{-8} m length.
OR		
MAND	450	47 (Contd.)

- 4. (a) A free particle of mass "m" is kept in a rectangular box of length "L". Considering one dimensional motion, obtain an expression of discrete energy of particle. Show that energy of particles are quantized.
 - (b) State the properties of wave function " ψ ". 2
 - Calculate the lowest three permissible energies of an electron if it is bound by an infinite square well potential of width 2.5×10⁻¹⁰ m.
 - (a) Define atomic radius and packing fraction.

 Calculate the atomic radii and packing fractions for Body Centered and Face Centered Cubic Unit Cell.
 - (b) What do you understand by Miller Indices of a crystal plane? Obtain the relation between interplanar spacing and Miller indices of plane in Cubic Unit Cell.
 - (e) For an FCC cubic crystal, the interplanar spacing of (110) plane is 2 Å. Calculate the atomic radius.

OR

- 6. (a) Calculate number of atoms per unit cell in Simple Cubic and Body Centered Cubic Unit Cell. Show that atomic density of BCC is double than SC-unit cell.
 - (b) Derive Bragg's law for X-ray diffraction in crystals.

 State any one application of it.

 (Contd.)

MHB-45247

-3

- (c) Bragg's Spectrometer is set for the first order reflection to be received by the detector at glancing angle 10°. Calculate the angle through which the detector is rotated to receive the second order reflection from the same face of crystal.
- 7. (a) Discuss energy band structures of conductors, insulators and semiconductors. Give a brief account of the general properties and characteristics of semiconductor.
 - (b) What do you mean by intrinsic semiconductor?
 Obtain an expression for the intrinsic carrier concentration in an intrinsic semiconductor.
 - (c) Find the resistance of an intrinsic germanium rod 1 cm \times 1 mm \times 1 mm at 300 K For Ge, n_i = 2.5×10¹³/cm³, μ_h = 3900 cm²/V.S, μ_e = 1900 cm²/V.S.

OR

- 8. (a) Draw neat and clean energy band diagrams of PN-junction in:
 - (i) Unbiased condition
 - (ii) Forward bias condition.
 - (b) Explain the phenomenon of Hall effect and obtain an expression of Hall voltage developed in rectangular specimen of conductor at equilibrium.
 - (c) The Hall coefficient of certain silicon specimen is found to be -7.5×10^{-5} m³/c at a certain temperature. If the conductivity is found to be 200 mho/m, calculate density of charge carriers and their mobility.

MHB-45247

4

18050