B.E. Second Semester Fire Engineering (C.B.S.)

Applied Mathematics - II Paper - I

P. Pages: 3
Time: Three Hours

TKN/KS/16/7290

Max. Marks: 80

Notes: 1.

- 1. All questions carry marks as indicated.
- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Use of non programmable calculator is permitted.

1. a) Evaluate

6

$$\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta$$

b) Evaluate

 $\int_{0}^{\infty} e^{-x^{2}} \cos \alpha x \, dx$

by using the concept of differentiation under integral sign. Given

$$\int\limits_{0}^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$$

OR

Find the root mean square value of (a sin pt + b cos pt) over the interval 0 to 2π .

2.

3.

Prove that $\int_{0}^{1} x^{n-1} \left[\log \left(\frac{1}{x} \right) \right]^{m-1} dx = \frac{\overline{m}}{n^{m}}.$

6

www.rtmnuonline.com9

6

b)

b)

a) Trace the curve $y^2 = x^2 - x^4$.

6

6

OR

4.

a) Find the volume of the solid generated by the rotation of the loop of the curve $y^2 = x^2 + x^3$ about the x-axis.

Find the area lying between the parabola $y = 4x - x^2$ and the line y = x.

6

b) Find the length of the curve $x = a cos^3 t$, $y = a sin^3 t$.

6

www.rtmnuodline.com

6

6

- 5. a) Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx$ dy by changing it into polar coordinates.
 - b) Evaluate following integral by changing the order of integration $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$.
 - Evaluate $\iint y \, dx \, dy$, over the area bounded by $y = x^2$ and x + y = 2.

OR

- 6. a) Evaluate $\iint r \, dr \, d\theta$, over the area of the curve $r = a(1 + \cos\theta)$ above the initial line.
 - b) Find the mass of the plate in the shape of the curve $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$, the density being given by $\rho = \mu xy$.
 - c) Evaluate $\int_{0}^{\log_e 2} \int_{0}^{x} \int_{0}^{x + \log_e y} e^{(x+y+z)} dz dy dx.$
- 7. a) Prove that $[\overline{a} \times {\overline{b} \times (\overline{c} \times \overline{d})}] \cdot \overline{d} = (\overline{b} \cdot \overline{d}) {\overline{a} \cdot (\overline{c} \times \overline{d})}$.
 - Find the directional derivative of $x^2y^2 + y^2z^2 + z^2x^2$ at (1, 1, -2) in the direction of tangent to the curve $x = e^{-t}$, $y = 2\sin t + 1$, $z = t \cos t$ at t = 0.
 - c) For what value of n, the vector field $\gamma^n \bar{\gamma}$ will be solenoidal?

OR

- 8. a) Find the tangential and normal components of acceleration at any time t, of a particle whose position at time t is given by $x = e^t \cos t$, $y = e^t \sin t$.
 - b) Show that $\overline{A} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational. Find the function ϕ such that $\overline{A} = \nabla \phi$.
 - Find the constants a and b so that the surface $ax^2 2byz = (a+4)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).
- Use Stoke's theorem to evaluate $\iint_S (\nabla \times \overline{F}) \cdot \hat{n}$ ds, where $\overline{F} = yi + (x 2xz)j xyk$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the XY-Plane.

OR

11. a) If y is the pull required to lift a load x by means of Pully block, find a linear law of the form y = mx + c connecting y and x using the following data:

X	12	15	21	25
У	50	70	100	120

Also compute y when x = 150 kg.

b) Use Lagrange's interpolation to find y when x = 5 from the following data.

6

X	0	1	3	8
у	1	3	13	123

OR

12. a) Find the coefficient of correlation and two lines of regression using following data:

7

X	1	2	3	4	5
у	2	5	3	8	7

b) Solve the difference equation $y_{n+2} - 3y_{n+1} + 2y_n = 2n + 1 + 2^n$.
