B.E. All Branch Second Semester (C.B.S.) / B.E. (Fire Engineering) Second Semester
 Applied Mathematics - II

P. Pages: 3

NRJ/KW/17/4342/4998
Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.
9. Use of non programmable calculator is permitted.

1. a) Prove that $\int_{0}^{1} \mathrm{x}^{\mathrm{n}-1}\left(\log \frac{1}{\mathrm{x}}\right)^{\mathrm{m}-1} \mathrm{dx}=\frac{\sqrt{\mathrm{m}}}{\mathrm{n}^{\mathrm{m}}}$.

5
b) By differentiating under integral sign, evaluate the integral
$F(a)=\int_{0}^{\infty} \frac{e^{-a x} \sin x}{x} d x$,
Hence show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

OR

2. a) Evaluate $\int_{0}^{\pi / 2} \sqrt{\tan \theta} \mathrm{~d} \theta$.
b) Obtain the root mean square value of $f(t)=3 \sin 2 t+4 \cos 2 t$ over the range $0 \leq t \leq \pi$.
3. a) Trace the curve $3 a y^{2}=x(x-a)^{2}$.
b) Find the area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and its asymptote.

OR

4. a) Find the area of the Cardioid $r=a(1+\cos \theta)$.
b) Find the Perimeter of the astroid.

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3} .
$$

5. a) Evaluate: $\iint \frac{\mathrm{xy}}{\sqrt{1-\mathrm{y}^{2}}} d x$ dy over the positive quadrant of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$.
b)

Evaluate: $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$ by changing the order of integration.
c)

Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y d x$ by changing it into polar coordinates.

OR

6. a) Find the area outside the circle $r=a \cos \theta$ and inside the circle $r=2 a \cos \theta$.
b) Find the mass of a plate in the shape of the curve

$$
\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1
$$

the density being given by $\rho=\mu x y$.
c) $\quad \log 2 x x+\log y$
7. a) Prove that:
i) $\hat{\mathbf{i}} \times(\overline{\mathrm{a}} \times \hat{\mathrm{i}})+\hat{\mathbf{J}} \times(\overline{\mathrm{a}} \times \hat{\mathbf{J}})+\hat{\mathrm{k}} \times(\overline{\mathrm{a}} \times \hat{\mathrm{k}})=2 \overline{\mathrm{a}}$
ii) $[\bar{b}+\bar{c} \quad \bar{c}+\bar{a} \quad \bar{a}+\bar{b}]=2[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$.
b) A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+5$, where t is the time. Find the components of its velocity and acceleration at $\mathrm{t}=1$ in the direction $\mathrm{i}+\mathrm{j}+3 \mathrm{k}$.
c) Find the constants a and b such that the surface $a x^{2}-2 b y z=(a+4) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$.

OR

8. a) Find the directional derivative of $\phi(x, y, z)=x^{3}-2 y^{2}+4 z^{2}$ at the point $(1,1,-1)$ in the direction of $2 \hat{\mathrm{i}}+\hat{\mathrm{J}}-\hat{\mathrm{k}}$.
In what direction will the directional derivative be maximum and what is its magnitude.
b) Show that:
i) Curl grad $\phi=0$
ii) div curl $\overline{\mathrm{A}}=0$
where $\overline{\mathrm{A}}=\mathrm{A}_{1} \hat{\mathrm{i}}+\mathrm{A}_{2} \hat{\mathrm{~J}}+\mathrm{A}_{3} \hat{\mathrm{k}}$.
c) Show that $\bar{A}=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is irrotational. Find the scalar potential ϕ such that $\overline{\mathrm{A}}=\nabla \phi$.
9. If $\overline{\mathrm{A}}=(\mathrm{y}-2 \mathrm{x}) \mathrm{i}+(3 \mathrm{x}+2 \mathrm{y}) \mathrm{j}$, find the circulation of $\overline{\mathrm{A}}$ about a circle C in the XY-plane with centre at origin and radius 2 if C is traverse in the positive direction.

OR

10. Evaluate: $\int_{C}\left[\left(x^{2}-\operatorname{coshy}\right) d x+(y+\sin x) d y\right]$
by Green's theorem where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1),(0,1)$.
11. a) Fit the curve $y=a x^{b}$ to the following data by least square method.

$$
\begin{array}{ccccccc}
\mathrm{x}: & 1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{y}: & 2.98 & 4.26 & 5.21 & 6.10 & 6.80 & 7.50
\end{array}
$$

b) Find two missing terms from the following data.

x	1	3	4	8	10
y	8	-	11	32	-

OR

12. a) Two lines of regression are given by $x+2 y-5=0$ and $2 x+3 y-8=0$. if $6_{x}^{2}=12$,

Find
i) The mean value of x and y
ii) Standard deviation of y
iii) The coefficient of correlation between x and y.
b) Solve:
$4 y_{n+2}-4 y_{n+1}+y_{n}=\frac{n}{2^{n}}$.

