B.E. All Branches Second Semester (C.B.S.) / B.E. (Fire Engineering) Second Semester

Applied Mathematics - II

Time: Three Hours

| Max. Marks: 80

NIR/KW/18/3287/3941

Notes: 1. All questions carry marks as indicated.

P. Pages: 3

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Ouestion 5 OR Ouestions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Use of non programmable calculator is permitted.

1. a) Evaluate
$$\int_{0}^{\pi/2} \sqrt{\cot \theta} \ d\theta.$$

b) A rod of length 'a' is divided into two parts at random. Prove that the mean value of the sum of squares on these two segments is $\frac{2a^2}{3}$.

OR

2. a) Evaluate
$$\int_0^\infty \frac{x^a}{a^x} dx$$
.

b) By differentiating under integral sign, evaluate the integral. $\int_{0}^{\infty} \frac{e^{-ax} \sin x}{x} dx \text{ and hence show that } \int_{0}^{\infty} \frac{\sin x}{x} dx = \pi/2.$

3. a) Trace the curve
$$9ay^2 = (x-2a)(x-5a)^2$$
.

b) Find the area included between the cardioid $r = a(1 + \cos \theta)$ and $r = a(1 - \cos \theta)$.

OR

4. a) Trace the curve
$$y^2 = x^2 - x^4$$
 and find area of its one loop.

b) Find the perimeter of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$.

- 5. a) Evaluate $\iint_R y \, dx \, dy$, where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
 - b) Evaluate $\iint_R (x^2 + y) dxdy$ by changing into polar form, where R is the region $x^2 + y^2 \le 1$.
 - c) Evaluate by changing the order of integration $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dx dy.$

OR

- 6. a) Find the area lying between the parabola $y = 4x x^2$ and the line y = x.
 - b) Evaluate $\iint_R r dr d\theta$ over the area of the curve $r = a(1 + \cos\theta)$ above the initial line. 6
 - c) Evaluate $\int_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x dz dx dy.$
- 7. a) Show that the vector $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) + (\overline{a} \times \overline{c}) \times (\overline{d} \times \overline{b}) + (\overline{a} \times \overline{d}) \times (\overline{b} \times \overline{c})$ is parallel to the vector \overline{a} .
 - b) Find directional derivative of $\phi(x, y, z) = x^2 2y^2 + 4z^2$ at the point (1, 1, -1) in the direction 2i+j-k. In what direction will the direction derivative be maximum? What is its magnitude?
 - A vector field is given by $\overline{A} = (6xy + z^3)i + (3x^2 3)j + (3xz^2 y)k$, prove that it is irrotational and hence find its scaler potential.

OR

- 8. a) A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, find the components of its velocity and acceleration at t=1 in the direction of i-3j+2k.
 - b) Find the angle between the tangents to the curve $\bar{r} = t^2 i 2tj + t^3k$ at the point t=1 and t=2.
 - c) Prove that
 -) curl grad $\phi = 0$
 - ii) div curl $\overline{A} = 0$

9. Use Green theorem in the plane to evaluate the integral $\int\limits_{C} \left(2x^2-y^2\right) dx + \left(x^2+y^2\right) dy \text{ where C is the boundary in XY-Plane of the area enclosed}$

by the x-axis and the semicircle $x^2 + y^2 = 1$ in the upper half of X Y Plane.

OR

7

- A vector field is given by $F = (\sin y)i + x(1 + \cos y)j; \text{ evaluate } \int_{C} F \cdot dr, \text{ where C is the circular path given by }$ $x^{2} + y^{2} = a^{2}, z = 0.$
- Fit a parabola $y=a+bx^2$ for the following data by least square method.

 x: 1 2 3 4 5

 y: 1.8 5.1 8.9 14.1 19.8
 - b) Find the missing term in the following data:

 x: 0 0.5 1 2.5 3

 y: -2 -0.375 3 - 19

 \mathbf{OR}

- 12. a) Two lines of regression are given by x+2y-5=0 and 2x+3y-8=0 If $\sigma_x^2=12$ find (i) The mean of x and y (ii) the coefficient of correlation between x and y, and (iii) the standard deviation of y.
 - b) Solve the difference equation $y_{n+3} 5y_{n+2} + 3y_{n+1} + 9y_n = 2^n + 3^n$.
