B.E. All Branches Second Semester (C.B.S.) / B.E. (Fire Engineering) Second Semester Applied Mathematics - II

P. Pages: 3

NIR/KW/18/3287/3941
Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.
9. Use of non programmable calculator is permitted.

1. a) Evaluate $\int_{0}^{\pi / 2} \sqrt{\cot \theta} \mathrm{~d} \theta$.
b) A rod of length 'a' is divided into two parts at random. Prove that the mean value of the sum of squares on these two segments is $\frac{2 \mathrm{a}^{2}}{3}$.

OR

2. a) Evaluate $\int_{0}^{\infty} \frac{x^{a}}{a^{x}} d x$.
b) By differentiating under integral sign, evaluate the integral.
3. a) Trace the curve $9 a y^{2}=(x-2 a)(x-5 a)^{2}$.
b) Find the area included between the cardioid $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ and $\mathrm{r}=\mathrm{a}(1-\cos \theta)$.

OR

4. a) Trace the curve $y^{2}=x^{2}-x^{4}$ and find area of its one loop.
b) Find the perimeter of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
5. a) Evaluate $\iint_{R} y d x d y$, where R is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
b) Evaluate $\iint_{R}\left(x^{2}+y\right) d x d y$ by changing into polar form, where R is the region $x^{2}+y^{2} \leq 1$.
c) Evaluate by changing the order of integration $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d x d y$.

OR

6. a) Find the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.
b) Evaluate $\iint_{R} r d r d \theta$ over the area of the curve $r=a(1+\cos \theta)$ above the initial line.
c) Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$.
7. a) Show that the vector
$(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})+(\overline{\mathrm{a}} \times \overline{\mathrm{c}}) \times(\overline{\mathrm{d}} \times \overline{\mathrm{b}})+(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
is parallel to the vector $\overline{\mathrm{a}}$.
b) Find directional derivative of $\phi(x, y, z)=x^{2}-2 y^{2}+4 z^{2}$ at the point (1, 1, -1) in the direction $2 \mathrm{i}+\mathrm{j}-\mathrm{k}$. In what direction will the direction derivative be maximum? What is its magnitude?
c) A vector field is given by $\overline{\mathrm{A}}=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-3\right) j+\left(3 x z^{2}-y\right) k$, prove that it is irrotational and hence find its scaler potential.

OR

8. a) A particle moves along the curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$, find the components of its velocity and acceleration at $t=1$ in the direction of $i-3 j+2 k$.
b) Find the angle between the tangents to the curve $\overline{\mathrm{r}}=\mathrm{t}^{2} \mathrm{i}-2 \mathrm{tj}+\mathrm{t}^{3} \mathrm{k}$ at the point $\mathrm{t}=1$ and $\mathrm{t}=2$.
c) Prove that
i) curl grad $\phi=0$
ii) $\operatorname{div} \operatorname{curl} \overline{\mathrm{A}}=0$
9. Use Green theorem in the plane to evaluate the integral
$\int_{c}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary in XY-Plane of the area enclosed by the x -axis and the semicircle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ in the upper half of $\mathrm{X} Y$ Plane.

OR

10. A vector field is given by
$\mathrm{F}=(\sin \mathrm{y}) \mathrm{i}+\mathrm{x}(1+\cos \mathrm{y}) \mathrm{j}$; evaluate $\int_{\mathrm{C}} \mathrm{F} \cdot \mathrm{dr}$, where C is the circular path given by $x^{2}+y^{2}=a^{2}, z=0$.
11. a) Fit a parabola $y=a+b x^{2}$ for the following data by least square method.

x:	1	2	3	4	5

y: $\begin{array}{llllll}1.8 & 5.1 & 8.9 & 14.1 & 19.8\end{array}$
b) Find the missing term in the following data:

```
x: 0
y: -2 -0.375 3 - 19
```


OR

12. a) Two lines of regression are given by
$x+2 y-5=0$ and $2 x+3 y-8=0$ If $\sigma_{x}^{2}=12$ find (i) The mean of x and y (ii) the coefficient of correlation between x and y, and (iii) the standard deviation of y.
b) Solve the difference equation $y_{n+3}-5 y_{n+2}+3 y_{n+1}+9 y_{n}=2^{n}+3^{n}$.
