Fifth Semester B. E. (Civil Engg.) (CBS) Examination

HYDROLOGY AND WATER RESOURCES

Time: Three Hours | Max. Marks: 80

- N. B. : (1) All questions carry marks as indicated.
 - (2) Answer total Six questions as per the choices given from Twelve questions.
 - (3) Assume suitable data wherever necessary.
 - (4) Illustrate your answers wherever necessary with the help of neat sketches.
 - (5) Use of Non-programmable electronic calculator is permitted.
- 1. (a) Explain briefly the importance of temperature, humidity and wind in hydrological study. 7
 - (b) Define the following terms:—
 - (i) Intensity of rainfall.
 - (ii) Mass curve.
 - (iii) Heytograph.
 - (iv) Raingauge (Recording)

- (v) Non-recording raingauge
- (vi) Artificial rain.

6

OR

- 2. (a) Explain briefly orographic precipitation and convective precipitation.
 - (b) Calculate the optimum number of rain gauges for a drainage basin so as to limit the percentage error within 8%. At present the drainage basin is provided with 5 raingagues. The average rainfall in cm at these stations is: 95, 85, 70, 55 and 40. Also determine the standard error of estimation of average rainfall in the existing set of raingauges.
- 3. (a) Draw a typical infiltration curve and indicate on it the various components. If infiltration capacity of a catchment is represented by $f = 0.5 + 1.2e^{-0.5xt}$ determine the values of various components.
 - (b) Λ 6 hour storm produced rainfall intensities of 7, 18, 25, 12, 10 and 4 mm per hour in successive one hour interval over a basin of 600 km². The resulting runoff is observed to be 2650 heetermeters. Determine Φ-index for the basin.

OR

4.. (a) If 7.35 litres of water is removed from an evaporation pan of diameter 1.25m and

simultaneously the rainfall recorded is 9.2 mm, determine the evaporation in mm. 5

- (b) Observations recorded for a reservoir during a period of one day are as follows:
 - (i) Catchment area = 25 km²
 - (ii) Waterspread = 0.7 km^2
 - (iii) Precipitation during the period = 50 mm
 - (iv) Runoff coefficient for basin = 0.6
 - (v) Drop in reservoir water level during the period = 10 cm
 - (vi) Constant discharge from reservoir = 9 m³/s. Find the average rate of evaporation during the given period in mm/hr neglecting seepage losses.

8

- 5. (a) What are the various components of runoff? Explain in brief.
 - (b) Explain briefly:
 - (i) Area-velocity method for stream flow measurement.
 - (ii) Classification of streams.

8

- 6. (a) How is base flow separated from the storm hydrography?
 - (b) Ordinates of 6 hr unit hydrograph are as given below:

Time	0	6	12	18	24	30	36	42	48	54	60	66
6 hr UHO	0	25	65	155	125	95	66	55	33	22	11	00

If two storms each of 6 hr duration occur in succession having rainfall excess 2.5 cm and 4.5 cm resp, compute ordinates of resulting hydrograph assuming base flow 50 cumecs.

- 7. (a) What is the probability that a flood of certain magnitude with a return period of 20 years,
 - (i) May occur in next 12 years?
 - (ii) Occurs twice in 10 successive years? 6
 - (b) Explain briefly:
 - (i) Causes and effects of flood.
 - (ii) Risk and reliability.

7

OR '

8. (a) Peak flow records for a river at a station, where a reservoir is to be constructed for a period of 80

years is as follows:

- (i) The anthmetic mean of peakes 7820 m³ sec
- (ii) The standard deviation = 2500 m^3 sec. Using Gumbel's method, determine the recurrence interval for a flood of 15000 m^3 sec. For 80 year sample size, Reduced mean, $y_n = 0.5569$ and reduced standard deviation $S_n = 1.1938$.
- (b) A culvert is proposed across a stream draining an area of 180 hectares. The catchment has a slope of 0.004 and length of travel of water is 1150m. Estimate 25 years flood if rainfall intensity is given by,

$$1 = \frac{1000 \text{ T}^{.0.2}}{(t+20)^{0.7}} \quad \begin{array}{c} 1 \rightarrow \text{ min/hr} \\ T_r \rightarrow \text{ years} \\ t \rightarrow \text{ minutes} \end{array}$$

Assume runoff coeff. = 0.35

7

- 9. (a) Define and discuss:
 - (i) Porosity.
 - (ii) Specific retention.
 - (iii) Aquifer.
 - (iv) Perched water table.

6

(b) In an confined aquifer 8 m thick, a 10 cm dia. Well

is pumped at 100 lit/min. Steady drawdown observed in two wells located at 10 m and 50 m from the centre of the well are 3m and 0.05 m resp. compute the transmissibility and the hydraulic conductivity of the aquifer.

OR

- 10. (a) The water level in the well was depressed by 3.5 m and it was observed to rise by 1.25 m in 60 minutes, determine.
 - (i) Yield from a well of 2.5 m dia, under a depression head of 3.0 m
 - (ii) Diameter of a well to yield 7.5 lit/sec under a depression of 2.2 m.
 - (b) Explain in brief methods of groundwater exploration.
- 11. (a) Explain in brief Groundwater recharge and any two recharging methods.
 - (b) Explain briefly:—
 - (i) Ground water quality.
 - (ii) Ground water movement.

OR

- 12. Write short notes on: (Any Four):
 - (i) Inter-basin water transfer.

NIK/KW/15 7410

6

'Contd.

- (ii) Water resource planning through watershed management.
- (iii) Multipurpose project.
- (iv) Interstate river dispute.
- (v) Selection of recharge sites.

$$3\frac{1}{2}$$
 x 4 = 14