

VRK/KS/14/6623/6628

Faculty of Engineering & Technology Fourth Semester B.E. (Electronics Engineering)/ET/EC (C.B.S.) Examination DIGITAL CIRCUITS AND FUNDAMENTAL OF MICROPROCESSOR

Time—Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Due credit will be given to neatness and adequate dimensions.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- (a) Write the canonical form of the following Boolean function and minimize by using K-Map and realize using logic gates.

$$F (A, B, C, D) = AB\overline{C}D + \overline{A}BCD + A\overline{B}\overline{C} + \overline{A}\overline{B}D + A\overline{C} + A\overline{B}C + \overline{B}.$$

(b) Convert the given expression in standard POS form and SOP form f (A, B,C) = (A + B) (B + C) (C + A)

7

OR

www.ı	3	/	Design 4 bit gray to binary convertor using table, K-Map and logic circuits.	c
	(F)	(b)-	Show how a full adder is realized from two adders. Draw the logic circuit and give its truth to	hal able
•	3. 0	(a)	Design a 3-bit even parity generator. Implement NAND gates.	6 Witl
		(b)	Explain static and dynamic hazards with suita example and also mention how to obtain haz	
			free circuit.	7
			OR .	
2	4.	(a)	Implement the following function using 8:1 multiple	xer
2			$f(A, B, C, D) = \sum (0, 3, 5, 7, 11, 13, 14).$	6
		(b)	Design 5:32 decoder using two 4:16 decoders.	5
		(c)	Explain priority encoder.	2
١,	5	(a)	Draw the logic diagram of JK flip flop using NAN	1D
)		gate and explain its working. Give the characteristic	
	J		equation of J-K flip flop?	6
) .	(b)	Write a note on triggering methods for flip flop	S.
·		-		4

OR

(c) Explain how latch can be used as one bit memory

cell.

3

6.	(a)	Convert the following:			
		(i) JK flip flop to T flip flop			
		(ii) T flip flop to D flip flop	7		
	(b)	Explain T flip flop in detail.	6		
7.	(a)	What are the different types of registers. Explain			
	,	detail along with circuit diagram.	7		
	(b)	Explain the following counters:			
		(i) Synchronous counter			
		(ii) Ripple counter	6		
		OR			
8.	(a)	Explain a synchrous 3 bit gray code	up counter.		
		Use T flip flop.	7		
	(b)	Explain the following:			
		(i) Clock skew			
		(ii) Lock out condition	6		
9.	(a)	Define the following parameters:			
		(i) Fan in			
		(ii) Fan out			
		(iii) Figure of Merit	6		
	(b)	Write a short note on semi conduct	or memories.		
		OR			

10. (a)	Implement the following function	using.
	(i) PROM	
	(ii) PLA	
	(iii) PAL	
	$F(A, B, C) = \sum m(3, 5, 6, 6)$, 7).
(b)	Compare the following logic families	in terms of pow
	dissipation, fan in, fan out and spe	ed of operation
	(i) TTL	
	(ii) CMOS	
	(iii) ECL	
	(iv) RTL	. 6
11/(a)	Draw and Explain the architecture.	7
W ON	Explain the following pins of 8085:	:
	(i) ALE	
	(ii) S_0 and S_1	
	(iii) Ready	
	(iv) HOLD	7
:	OR	
12. (a)	What are the different addressing mo	odes supported
	by 8085	7
(b)	What is an interrupt? How can th	_
	8085 be classified?	5
(c)	Write an assembly language progra	m to add two
	8 bit numbers.	
MIS706	4	6050