RVK/KW/13/3304

Faculty of Engineering & Technology Eighth Semester B.E. (Power Electronics) Examination DESIGN OF POWER ELECTRONIC CIRCUITS Sections-A & B

Time: 3 Hours]

[Maximum Marks: 80]

http://www.rtmnuonline.com

http://www.rtmnuonline.com

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- Answer TWO questions from Section A and TWO questions from Section B.
- Assume suitable data wherever necessary.
- Illustrate your answers wherever necessary with the help of neat sketches.
- (5) Use of non-programmable electronic calculator is permitted.

SECTION-A

- What are the advantages and disadvantages of switch mode power supply over the conventional power supply?
 - Design the SMPS with the following specifications:

$$V_o = 10 \text{ V}$$

$$I_{Lmax} = 1 \text{ Amp}$$

MHB-42697

(Contd.)

 $V_1 = 20 \pm 15\%$

$$\Delta V_0 = 20 \text{ mV}$$

Switching frequency = 25 kHz

Derive the design equations.

15

(a) Design of regulator using IC 723 for the output voltage of 5 Volts.

> What is line regulation, load regulation for the regulator circuit ? 12

- (b) Draw the circuit of 555 IC timer as a monostable multivibrator and sketch the waveforms of trigger pulse voltage and output voltage.
- 3. Design Colpitt's Oscillator for an oscillating frequency of 150 kHz.

Assume
$$V_{CC} = 18 \text{ V}$$

Gain of an amplifier, $A_v = 10$

8

(b) Design a class-B audio power amplifier to deliver an output power of 5 watts to a load of 10 Ω resistance.

Assume,
$$V_{cc} = 12 \text{ V}$$

 h_{FI} for a power transistor = 25

12

The SCR has forward breakover voltage of 150 V when gate current of 2 mA flows in the gate circuit. When a sinusoidal voltage of

MIIB-42697

(Contd.)

400 V rms is applied to it, find the average valu of the output voltage.

(Draw necessary waveform)

8

- (b) Write technical notes on (any TWO) :-
 - (i) Over voltage protection in linear regulators
 - (ii) Emitter Follower Regulator Design. 6
 - (iii) Design of LC transistorised oscillators. 6

SECTION-B

- (a) Explain the working of multiphase chopper with waveforms.
 - (b) A highly inductive load is controlled by the chopper shown in Fig. Q. 5(b) requires an average current of 400 Amp with a peak value of 450 Amp.

MHB--42697

(Contd.)

Input dc voltage = 200 V

Chopping frequency = 500 Hz and

Turn-off time of SCR = $20~\mu s$. If the peak current through the SCR is limited to 1.71 m, determine the sizes of L and C and also find the minimum and maximum values of output voltages.

- (a) State the design criteria for designing a pulse transformer for triggering SCRs in a 1 φ converter.
 Discuss the conditions under which input pulse is faithfully transmitted or is transmitted in the form of exponentially delaying pulse.
 - (b) Design a UJT triggering circuit for 1 φ full wave fully controlled converter to deliver output voltage from 0—220 V. The input supply is 230 V_{rms}.

8

- 7. (a) A full bridge bipolar PWM inverter is operated from a 240 V battery and is driving an RL load. Find out the following if the modulation index m = 0.8:
 - (i) Total RMS output voltage
 - (ii). Fundamental output voltage
 - (iii) Distortion factor
 - (iv) Harmonic factor
 - (v) Gain of the inverter.

13

MHB-42697

http://www.rtmnuonline.com

(Contd.)

ad

(b)	A series	inverter	has	following	parameters
	inductance L = 12 mH, $C = 0.1 \mu F$, load resistor				
	$R = 100 \Omega$ and $T_{off} = 0.3 ms$.				

Determine :-

- (i) the frequency of the output voltage
- (ii) the attenuation factor.
- 3. (a) Design the control circuit of a 3 ph induction motor, using volt-frequency control. 10
 - (b) Give the design of OTT filter for a square-wave inverter.