KNT/KW/16/5060

Bachelor of Science (B.Sc.) Semester-I (C.B.S.) Examination ELECTRONICS (Fundamentals of Digital Electronics)
 Compulsory Paper-2

Time : Three Hours]
[Maximum Marks : 50
N.B. :-All questions are compulsory and carry equal marks.

EITHER

1. (A) Define the following :-
(1) Base of a number system
(2) Weight of a digit.

How is negative number represented using 1's and 2's complement methods. Give examples. Perform the following subtraction using 2's complement method :

$$
(67)_{10}-(47)_{8} \text { in } 8 \text { bit pattern. }
$$

OR

(B) What is excess-3 code ? Why excess- 3 code is called a self complementary code ? Add the following decimal numbers by first converting them to excess- 3 form :
(1) 3 and 3
(2) 15 and 53
(3) 62 and 28
$1+3+6$

EITHER

2. (A) Explain the use of NAND and NOR gates as universal building blocks. State and prove the Morgan's theorems. What are its circuit implications?

OR

(B) What is a logic gate ? Explain the basic logic gates with truth table and logic symbol. State Duality theorem of Boolean Algebra. Give one example. Prove using Boolean laws $\mathrm{A}+\overline{\mathrm{B}} \mathrm{C}=(\mathrm{A}+\overline{\mathrm{B}})(\mathrm{A}+\mathrm{C}) . \quad 1+3+3+3$

EITHER

3. (A) What is k-map ? Explain various terms related to k-map. What are its advantages ? Explain the SOP and POS terms in k-map with examples.

OR
(B) Simplify the following logic functions using k-map. Draw the logic diagram for simplified equation :

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,5,7,8,9,10,11,14,15) \\
& \mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3,5,7,8,9,11,14)
\end{aligned}
$$

EITHER

4. (A) What are the decoder and encoder ? Draw the block diagram of $3: 8$ line decoder and explain its working. Explain decimal to BCD Encoder with the help of logic diagram. $2+3+5=10$

OR

(B) Give the truth table and logic diagram of a full adder and explain its working. What is multiplexer ? Construct 8:1 MUX using 4:1 MUX and explain.
$5+5$
5. Solve any TEN :-
(A) Convert $(\mathrm{ABC})_{16}=(\square)_{2}$
(B) Find 2 's complement of $(1010,1111)_{2}$.
(C) Convert $(1001)_{2}=(\square)_{\text {gray }}$.
(D) Draw the truth table of NOR gate.
(E) What is the dual of $(\mathrm{A}+1)=1$?
(F) Construct XOR gate using only NOR gates.
(G) What do you mean by min term ?
(H) How many variables are eliminated in a quad?
(I) Find the SOP of the equation :
$\mathrm{Y}=(\mathrm{A}+\mathrm{BC}) \cdot(\mathrm{A}+\overline{\mathrm{C}} \mathrm{A})$.
(J) Define combinational logic.
(K) Draw half adder circuit using basic gates.
(L) What is an encoder?

