Bachelor of Science (B.Sc.) Semester-I (C.B.S.) Examination
 MATHEMATICS (Algebra and Trigonometry)
 Compulsory Paper-1

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative, solve each question in full or its alternative in full.

UNIT-I

1. (A) Find rank of the matrix A by reducing it into the normal form, where :

$$
A=\left[\begin{array}{cccc}
2 & -2 & 0 & 6 \\
4 & 2 & 0 & 2 \\
1 & -1 & 0 & 3 \\
1 & -2 & 1 & 2
\end{array}\right]
$$

(B) Show that the equations :
$x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2, x-y+z=-1$ are consistent and hence solve them.

OR

(C) Find characteristics roots of the matrix :

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

and find characteristic vector associated with the least value of the characteristic root.
(D) Show that the matrix $A=\left[\begin{array}{cc}-2 & -1 \\ 5 & 4\end{array}\right]$ satisfies Cayley-Hamilton theorem. Hence find A^{-1}.

UNIT-II
2. (A) Solve the equation $x^{3}-10 x^{2}+27 x-18=0$ given that one of its roots is double the other.
(B) Find the condition that the roots of the equation $x^{3}-p x^{2}+q x-1=0$ be in arithmetic progression. Hence or otherwise solve the equation $\mathrm{x}^{3}-6 \mathrm{x}^{2}+3 \mathrm{x}+10=0$.

OR

(C) Solve $x^{3}-21 x-344=0$ by Cardon's method.
(D) Solve the biquadratic equation $x^{4}-3 x^{2}-6 x-2=0$ using Ferrari's method.
3. (A) If $x_{r}=\cos \left(\frac{\pi}{2^{r}}\right)+i \sin \left(\frac{\pi}{2^{r}}\right)$, then prove that $x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots=-1$.
(B) Solve the equation :

$$
\begin{equation*}
\mathrm{x}^{5}+1=0 \text { using DeMoivre's theorem. } \tag{6}
\end{equation*}
$$

OR

(C) If $\cosh (\alpha+i \beta)=x+i y$, prove that:
(i) $\frac{x^{2}}{\cosh ^{2} \alpha}+\frac{y^{2}}{\sinh ^{2} \alpha}=1$
(ii) $\frac{\mathrm{x}^{2}}{\cos ^{2} \beta}-\frac{\mathrm{y}^{2}}{\sin ^{2} \beta}=1$
(D) Separate into real and imaginary parts :
(i) $\cot (x+i y)$
(ii) $\log (x+i y)$.

UNIT - IV

4. (A) Let (G, \circ) be a group. Then prove that:
(i) $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{G}$
(ii) $(\mathrm{a} \circ \mathrm{b})^{-1}=\mathrm{b}^{-1} \circ \mathrm{a}^{-1} \forall \mathrm{a}, \mathrm{B}^{\prime} \in \mathrm{G}$.
(B) Show that the set $\mathrm{G}=\{1,1, \mathrm{i},-\mathrm{i}\}$ is an abelion group of order 4 under multiplication.

OR

(C) Prove that intersection of any two subgroups of a group is a subgroup.

Give an example to prove that union of two subgroups need not be a subgroup.
(D) Complete $\mathrm{a}^{-1} \mathrm{ba}$ for $\mathrm{a}=(7,5,9), \mathrm{b}=(2,1,3)$.

Question-5

5. (A) Find eigen values of the matrix :

$$
A=\left[\begin{array}{ll}
6 & 4 \\
1 & 2
\end{array}\right]
$$

(B) For a system of linear equations $x+2 y+z=2,2 x+4 y+2 z=3,3 x+6 y+3 z=4$, find rank of the coefficient matrix.
(C) Transform the equation :
$x^{4}-3 x^{2}+x^{2}-x+5=0$ into another whose roots shall be reciprocals of the roots of this equation.
(D) If α, β, γ be the roots of the cubic equation $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$, then calculate the value of $\Sigma \alpha^{2}$.
(E) Prove that:

$$
\log (-x)=(2 n+1) \pi i+\log x
$$

(F) Prove that:
$\cos (\mathrm{ix})=\cosh (\mathrm{x})$ and
$\sin (\mathrm{ix})=\mathrm{i} \sinh (\mathrm{x})$

(G) Find disjoint right cosets of a subgroup $\left(Z_{3},+\right.$) of group of integers ($Z,+$). 11/2
(H) Determine whether the permutation $\mathrm{f}=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)$ is old or even. $11 / 2$

