Bachelor of Science (B.Sc.) Semester-I Examination
 MATHEMATICS (ALGEBRA AND TRIGONOMETRY)
 Optional Paper-1

Time : Three Hours]
[Maximum Marks : 60
Note :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question No. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Reduce the Matrix $\mathrm{A}=\left[\begin{array}{llll}1 & 3 & 4 & 5 \\ 1 & 2 & 6 & 7 \\ 1 & 5 & 0 & 1\end{array}\right]$
into its normal form and find its rank.
(B) Investigate for what values of λ and μ the equations:
$x+2 y+z=8$,
$2 x+y+3 z=13$,
$3 x+4 y-\lambda z=\mu$
have (i) no solution
(ii) a unique solution
and (iii) infinite number of solutions.

OR

(C) Find characteristic roots of the matrix $\mathrm{A}=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
and find characteristic vectors associated with the least-value of the characteristic root.
(D) Verify Cayey-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{rrr}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right]$.

UNIT-II

2. (A) The cubic equation $2 x^{3}-9 x^{2}+12 x-b=0$ has two equal roots. Find values of b and solve the equation completely.
(B) If α, β, γ are the roots of the equation $x^{3}+3 x^{2}+5 x+7=0$, then find the values of symmetric functions :
(i) $\sum \alpha^{2}$
(ii) $\sum \alpha^{2} \beta$
(iii) $\sum \alpha^{2} \beta \gamma$.

OR

(C) Solve the reciprocal equation $2 x^{5}-7 x^{4}-x^{3}-x^{2}-7 x+2=0$ by reducing it into its standard form. 6
(D) Solve the equation $x^{3}+x^{2}-16 x+20=0$ by Cardon's method.

UNIT-III

3. (A) Prove DeMoivre's theorem:
$(\cos \theta+i \sin \theta)^{\mathrm{n}}=\cos \mathrm{n} \theta+\mathrm{i} \sin \mathrm{n} \theta$,
for every positive and negative integer n.
(B) Prove that:-

$$
\begin{equation*}
(a+i b)^{m / n}+(a-i b)^{m / n}=2\left(a^{2}+b^{2}\right)^{m / 2} \cos \left(\frac{m}{n} \tan ^{-1} \frac{b}{a}\right) \tag{6}
\end{equation*}
$$

OR

(C) Separate into real and imaginary parts :
(i) $\operatorname{Cot}(\alpha+i \beta)$
(ii) $\log (x+i y)$.
(D) Prove that if $\tanh \mathrm{y}=\mathrm{x}$, then $\mathrm{y}=\tanh ^{-1} \mathrm{x}=\frac{1}{2} \log \left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$.

UNIT-IV
4. (A) Prove that the set $\mathrm{G}=\{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.
(B) Let (G, o) be a group. Show that $(a \mathrm{ob})^{-1}=\mathrm{b}^{-1} \circ \mathrm{a}^{-1} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.

OR

(C) Show that order of a subgroup H of a finite group G is a divisor of the order of the group G .
(D) Show that out of the n ! permutations on n symbols, $\frac{n!}{2}$ are even permutations and $\frac{n!}{2}$ are odd permutations.

Questions-V

5. (A) Use Cayley-Hamilton theorem to find A^{8}, if $\mathrm{A}=\left[\begin{array}{rr}2 & 1 \\ 1 & -2\end{array}\right]$.
(B) Determine the solution of the system of equations:
$y+2 z=0$,
$x+y+2 z=3$
$3 x+3 y+6 z=9$
(C) Find the condition that the sum of two roots of the equation $x^{3}-p x^{2}+q x-r=0$ is zero.
(D) Show that equation $\mathrm{x}^{4}-2 \mathrm{x}^{3}-1=0$ has at least two imaginary roots. $11 / 2$
$\begin{array}{ll}\text { (E) Find all the values of }(-\mathrm{i})^{1 / 3} \text {. } & 11 / 2\end{array}$
(F) Determine the general value of $\log (-5) . \quad 11 / 2$
(G) Determine the identity element of a group (I, o) of all integers under the operation $\mathrm{a} o \mathrm{~b}=\mathrm{a}+\mathrm{b}+1$.
(H) Find inverse of the permutation $\mathrm{f}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3\end{array}\right)$ and evaluate f o f^{-1}.
