6

NRT/KS/19/2008

Bachelor of Science (B.Sc.) Semester—I Examination MATHEMATICS (ALGEBRA AND TRIGONOMETRY)

Optional Paper—1

Time: Three Hours] [Maximum Marks: 60

Note :— (1) Solve all the **five** questions.

- (2) All questions carry equal marks.
- (3) Question No. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

(A) Reduce the Matrix $A = \begin{bmatrix} 1 & 3 & 4 & 5 \\ 1 & 2 & 6 & 7 \\ 1 & 5 & 0 & 1 \end{bmatrix}$ 1.

into its normal form and find its rank.

6

(B) Investigate for what values of λ and μ the equations:

$$x + 2y + z = 8,$$

$$2x + y + 3z = 13$$
,

$$3x + 4y - \lambda z = \mu$$

have (i) no solution

(ii) a unique solution

and (iii) infinite number of solutions.

6

OR

(C) Find characteristic roots of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

and find characteristic vectors associated with the least-value of the characteristic root.

(D) Verify Cayey-Hamilton theorem for the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$. 6

UNIT—II

- (A) The cubic equation $2x^3 9x^2 + 12x b = 0$ has two equal roots. Find values of b and solve the equation 2. completely.
 - (B) If α , β , γ are the roots of the equation $x^3 + 3x^2 + 5x + 7 = 0$, then find the values of symmetric functions:

 - 6

- (C) Solve the reciprocal equation $2x^5 7x^4 x^3 x^2 7x + 2 = 0$ by reducing it into its standard form. 6
- (D) Solve the equation $x^3 + x^2 16x + 20 = 0$ by Cardon's method. 6

CLS-13337 1 (Contd.)

6

UNIT—III

3. (A) Prove DeMoivre's theorem:

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta,$

for every positive and negative integer n.

(B) Prove that:—

$$(a+ib)^{m/n} + (a-ib)^{m/n} = 2(a^2+b^2)^{m/2n} \cos\left(\frac{m}{n} \tan^{-1}\frac{b}{a}\right).$$

OR

- (C) Separate into real and imaginary parts:
 - (i) $\operatorname{Cot}(\alpha + i\beta)$
 - (ii) $\log(x+iy)$.

(D) Prove that if
$$\tanh y = x$$
, then $y = \tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$.

UNIT—IV

- 4. (A) Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.
 - (B) Let (G, o) be a group. Show that $(a \circ b)^{-1} = b^{-1} \circ a^{-1} \forall a, b \in G$.

OR

- (C) Show that order of a subgroup H of a finite group G is a divisor of the order of the group G.
- (D) Show that out of the n! permutations on n symbols, $\frac{n!}{2}$ are even permutations and $\frac{n!}{2}$ are odd permutations.

Ouestions—V

- 5. (A) Use Cayley-Hamilton theorem to find A⁸, if $A = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$. 1½
 - (B) Determine the solution of the system of equations:

$$y+2z=0,$$

$$x + y + 2z = 3$$

$$3x + 3y + 6z = 9$$

- (C) Find the condition that the sum of two roots of the equation $x^3 px^2 + qx r = 0$ is zero. 1½
- (D) Show that equation $x^4 2x^3 1 = 0$ has at least two imaginary roots. 1½
- (E) Find all the values of $(-i)^{1/3}$. $1\frac{1}{2}$
- (F) Determine the general value of Log(-5). $1\frac{1}{2}$
- (G) Determine the identity element of a group (I, o) of all integers under the operation $a \circ b = a + b + 1$.

 1½
- (H) Find inverse of the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3 \end{pmatrix}$ and evaluate $f \circ f^{-1}$.