Bachelor of Science (B.Sc.) Semester-I (C.B.S.) Examination
 MATHEMATICS

(Algebra and Trigonometry)
Compulsory Paper-1
Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) Find rank of the Matrix A by reducing it into the normal form, where :

$$
\mathrm{A}=\left[\begin{array}{rrrr}
2 & -2 & 0 & 6 \tag{6}\\
4 & 2 & 0 & 2 \\
1 & -1 & 0 & 3 \\
1 & -2 & 1 & 2
\end{array}\right]
$$

(B) Investigate for what value of λ and μ, the simultaneous equations $x+2 y+z=8$, $2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=1,3 \mathrm{x}+4 \mathrm{y}-\lambda \mathrm{z}=\mu$ have (i) no solution (ii) unique solution and (iii) infinitely many solutions.

OR

(C) Find eigen values and the corresponding eigen vectors with respect to the greatest eigen value of the matrix :

$$
\mathrm{A}=\left[\begin{array}{rrr}
1 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(D) Verify Cayley-Hamilton's theorem for the matrix $A=\left[\begin{array}{rrr}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right]$.

UNIT-II
2. (A) If α, β, γ are the roots of cubic equation $x^{3}+p^{2}+q x+r=0$, then calculate the value of symmetric functions (i) $\Sigma \alpha^{2}$ (ii) $\Sigma \alpha^{2} \beta$ (iii) $\Sigma \alpha^{2} \beta^{2}$.
(B) Solve the reciprocal equation $x^{2}-5 x^{4}+6 x^{3}-6 x^{2}+5 x-1=0$ by reducing it to the standard form.

OR

(C) Solve the cubic equation $x^{3}-6 x-9=0$ by Cardon's method.
(D) Solve the equation $x^{4}-2 x^{3}-5 x^{2}+10 x-3=0$ by Ferrari's method.

UNIT-III

3. (A) If $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, then prove that :

$$
\begin{align*}
& \cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma) \text { and } \\
& \sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma) \tag{6}
\end{align*}
$$

(B) Find all the values of $(1)^{1 / n}$. Show that these n roots form a series in geometric progression.
(C) Separate $\log \sin (x+i y)$ into real and imaginary parts.
(D) If $\cosh y=x$, then prove that :

$$
y=\cosh ^{-1} x=\log \left[x+\sqrt{x^{2}-1}\right]
$$

4. (A) Prove that the set $G=\{1,2,3,4\}$ forms an abelian group with respect to multiplication modulo 5.
(B) In a group ($\mathrm{G}, 0$); prove that:
(i) Identity element of G is unique
(ii) Inverse of every element of G is unique
(iii) $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{G}$.
(C) Of the n ! permutations on n symbols, prove that $\frac{n \text { ! }}{2}$ are even permutations and $\frac{n \text { ! }}{2}$ are odd permutations.
(D) Show that $\mathrm{H}=\{3 \mathrm{~m} / \mathrm{m} \in \mathrm{Z}\}$ is a subgroup of additive group of integers. Further write all the distinct right cosets of H in $(\mathrm{Z},+)$.

Question-V

5. (A) If matrix A satisfies its characteristic equation $\lambda^{3}-3 \lambda^{2}+2 \lambda-4=0$, then find A^{-1}.
(B) Find eigen values of the matrix $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
(C) Form the cubic equation whose roots are $1,1+\mathrm{i} \sqrt{3}$.
(D) Using Descartes' rule of sign, investigate the nature of roots of the equation :

$$
x^{9}+x^{7}-x^{4}-4 x^{3}-x^{2}+5=0
$$

(E) Express a complex number $\mathrm{z}=1+\mathrm{i}$ in polar form.
(F) Evaluate the value of $\mathrm{z}=\mathrm{e}^{\mathrm{j} \pi}-\mathrm{e}^{-\mathrm{in} \pi}$.
(G) Find whether $\mathrm{H}=\{0,1,-1\}$ is a subgroup of additive group of integers.
(H) Find index of H in G , when $\mathrm{H}=\{1,-1\}$ is a subgroup of multiplicative group $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$.

