KNT/KW/16/5043

Bachelor of Science (B.Sc.) Semester—I (C.B.S.) Examination

PHYSICS (Properties of Matter and Mechanics)

Compulsory Paper—1 (101)

Time : Three Hours] [Maximum Marks : 50

- **N.B.**:— (1) **All** questions are compulsory.
 - (2) Draw neat diagrams wherever necessary.

Given: $g = 9.8 \text{ m/sec}^2$

density of water = 10^3 kg/m³

EITHER

- 1. (A) Define elastic limit. State and explain Hooke's law show that for a homogeneous isotropic medium, $Y = 2\eta (1 + \sigma)$ where letters have their usual meaning.
 - (B) (i) Describe an experiment to determine the modulus of rigidity of a material using Maxwell's Needle.
 - (ii) A solid cylinder of length 1m and diameter 8 mm is fixed at one end and the other end is twisted through an angle 5° by an application of torque 2.5 Nm. Calculate the modulus of rigidity of the material of the cylinder.

OR

(C) Derive an expression for work done in stretching a wire.

 $2\frac{1}{2}$

- (D) Define Poisson's Ratio. Show that the Poisson's ratio lies between 1 and 0.5 for homogeneous isotropic body.
- (E) Explain external and internal bending moment.

 $2\frac{1}{2}$

(F) A brass bar 1 cm² in cross-section is supported on two knife edges one meter apart. A load of 1 kg at the centre of bar depresses that point by 2.51 mm. Calculate Young's modulus of brass.

NVM—7949 1 (Contd.)

EITHER

2.	(A)	What is an ideal fluid? State and prove Bernoulli's theorem.	5
----	-----	--	---

(B) (i) Obtain Euler's equation of motion for non-viscous fluid.

3

(ii) Water flows through a horizontal pipe of varying cross-section. At a point where the pressure of water is 0.05 m of mercury, the velocity of flow is 0.25 m/s. Calculate the pressure at another point where velocity of flow is 0.4 m/s.

OR

- (C) What is critical velocity? Derive an expression for critical velocity by using method of dimensions.
- (D) In the Poiseuille's experiment, the following observations were made.

Volume of water collected in 5 min = 40 C.C.;

Head of water = 0.4 m,

Length of tube = 0.602 m,

Radius of Capillary tube = 0.52×10^{-3} m.

Calculate coefficient of viscosity of water.

 $2\frac{1}{2}$

(E) What is streamline and turbulent flow of liquid? Explain.

 $2\frac{1}{2}$

(F) Explain the effect of temperature and pressure on the viscosity of liquid.

 $2\frac{1}{2}$

EITHER

- 3. (A) What is surface tension? State its unit and dimensions. Derive an expression for the height of liquid column in a Capillary tube of radius r.
 - (B) (i) Derive an expression for centripetal acceleration in case of rotating frame of reference.

3

(ii) The position vector of a point is given by $\bar{r} = (4t^2 - 2t)\hat{i} + t^2\hat{j}$. Find the velocity and acceleration of a point at t = 3 sec in SI units.

OR

(C) On what factors does the angle of contact depend? Explain wetting action of a solid surface by the liquid.

(D)	Calculate the work done in blowing a soap bubble of radious 10 cm and surface tension			
	30 dynes per cm.	21/2		
(E)	State Newton's laws of motion. Derive Newton's third law from the second law.	21/2		
(F)	What is Coriolis force ? State its applications.	21/2		
EIT	HER			
(A)	State the principle of working of a rocket and derive an expression for its instantaneous velocity.			
	What are the advantages of multistage rockets over single stage rockets?	5		
(B)	(i) State and prove the law of conservation of linear momentum.	3		
	(ii) The position of centre of mass of three particles of masses 1 kg, 2kg and 3	kg is at		
	(1, 1, 1) m. Where should a particle of mass 5 kg be kept so that the position of	of centre		
	of mass of the entire system becomes (0, 0, 0) ?	2		
OR				
(C)	State and prove the theorem of parallel axis.	21/2		
(D)	A particle of mass m_1 moving with velocity u_1 collides head-on with a stationary particle of mass m_2 . Considering perfectly elastic collision, prove that velocity of stationary particle after			
	collision is $\frac{2 \mathrm{m_1 u_1}}{\mathrm{m_1 + m_2}}$.	21/2		
(E)	Calculate moment of inertia of a solid sphere of mass 50 kg and radius 10 cm a	about its		
	diameter.	21/2		
(F)	What is principal moment of inertia and principal axes of a rigid body in rotational me	otion ?		
		21/2		
Atte	empt any TEN questions :—			
(i)	Define Young's modulus and state its CGS unit.			
(ii)	What is torsional constant?			
(iii)	Calculate geometric moment of inertia of a circular bar of radius 2 cm and length 1 m	clamped		
	horizontally at one end.			
(iv)	What is terminal velocity?			
(v)	Define kinematic and dynamic viscosity			

4.

5.

- (vi) Calculate critical velocity of a flow of liquid of density 10^3 kg/m³ and viscosity 10^{-3} Ns m⁻² flowing through a tube of radius 0.5×10^{-2} m. (Given : Reynold's number = 2000).
- (vii) What is surface energy?
- (viii) Define inertial and non-inertial frames of reference.
- (ix) Find the Cartesian co-ordinates corresponding to the polar co-ordinates $\left(-1, \frac{5\pi}{4}\right)$.
- (x) Define radius of gyration.
- (xi) State equation of motion of centre of mass of a system of particles.
- (xii) Explain the physical significance of moment of inertia.

 1×10