NRT/KS/19/2010

Bachelor of Science (B.Sc.) Semester-I Examination PHYSICS (PROPERTIES OF MATTER AND MECHANICS)
 Optional Paper-1

Time : 3 Hours]
[Maximum Marks : 50
N.B. :- (1) All questions are compulsory.
(2) Draw neat diagrams wherever necessary.

EITHER

1. (A) Define Poisson's ratio and give limiting values of Poisson's ratio. If Y, K and σ represents Young's modulus, Bulk modulus and Poisson's ratio, then, show that, $\mathrm{Y}=3 \mathrm{~K}(1-2 \sigma) .5$
(B) (i) Obtain an expression for time period of torsional pendulum.
(ii) A wire of length 1 m and diameter 1 mm is damped at one end. Calculate the torque required to twist other end by 90°. If modulus of rigidity of material of wire is 2.8×10^{10} $\mathrm{N} / \mathrm{m}^{2}$.

OR

(C) Derive an expression for work done in stretching a wire.
(D) Show that for a homogeneous isotropic medium, $\mathrm{Y}=2 \eta(1+\sigma)$, where constants have their usual meaning.
(E) Derive an expression for the bending of a beam supported at two ends and loaded in the middle.
(F) A beam of square cross section $1 \mathrm{~cm}^{2}$ and 1 m long is clamped horizontally at one end. When the load of 1 kg is applied to the free end, the depression of the free end is $4 \times 10^{-2} \mathrm{~m}$. Calculate Young's modulus of the material of the cantiliver. $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \quad 2112$

EITHER

2. (A) State and prove the Stoke's law by method of dimensions. Deduce an expression for terminal velocity of a spherical body, through a viscous medium.
(B) (i) State and prove Bernoulli's Theorem.
(ii) Calculate the mass of water per second initially flowing out of the hole. If the depth of water in an open tank is 2.5 m and a small hole of cross-section $3 \mathrm{~cm}^{2}$ is made at the bottom of tank. $\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$

OR

(C) What is the effect of temperature on coefficient of viscosity? Explain.
(D) State Newton's law of viscous force. Obtain an expression for coefficient of viscosity. State its unit.

[^0](F) Calculate the mass of water flowing in 10 minutes through a tube 0.1 cm in diameter and 40 cm long under a constant pressure head of 20 cm of water. The coefficient of viscosity of water at room temperature is 8.2×10^{-3} poise.

EITHER

3. (A) Define surface tension. State its units and dimensions. Derive an expression for the height of liquid column in a capillary tube of radius 'r'.
(B) (i) Define Coriolis force. Discuss the applications of the Coriolis force.
(ii) Find the polar coordinates corresponding to the following Cartesian coordinates :
(a) $(1,0)$
(b) $(1,1)$

OR

(C) Distinguish between inertial and non-inertial frame of reference with example.
(D) State Newton's law's of motion. Derive an expression for Newton's third law from the second law. $2 \frac{1}{2}$
(E) What is surface energy? Show that the surface tension of a liquid is equal to its surface energy per unit area.
(F) Calculate the height to which a liquid will rise in a capillary tube of radius 0.2 mm when surface tension of liquid is $20 \times 10^{-3} \mathrm{~N} / \mathrm{m}$ and density $800 \mathrm{~kg} / \mathrm{m}^{3}$. (assuming angle of contact 0°)

EITHER

4. (A) What is elastic and inelastic collision ? Derive the equations for final velocities of two particles when the collision between them is perfectly one dimensional elastic.
(B) (i) Deduce an expression for the moment of inertia of solid cylinder about an axis passing through its centre and perpendicular to its length.
(ii) Mass of earth is $6 \times 10^{24} \mathrm{~kg}$ and its radius is 6400 km . Find the moment of Inertia of earth about its axis of rotation.

OR
(C) State and prove the law of conservation of energy.
(D) Explain the need of multistage rocket to launch the satellite. $2 \frac{1}{2} 2$
(E) Explain the term moment of inertia and give its physical significance. $21 / 2$
(F) Calculate the radius of gyration of solid sphere rotating about its diameter if its radius is 5.0 cm .
5. Attempt any ten questions :
(i) Define angle of twist
(ii) Define compressibility.
(iii) Calculate the bulk modulus of brass. ($\mathrm{Y}=10 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and $\left.\eta=3.7 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)$
(iv) What is Critical Velocity?
(v) What is Reynold's number?
(vi) The critical velocity of fluid flows in capillary tube of radius 0.02 mm is $4 \mathrm{~cm} / \mathrm{s}$, what will be the critical velocity of the same fluid in capillary of radius 0.01 mm ?
(vii) State any two applications of Newton's laws of motion.
(viii) Mention conditions for the validity of the Stoke's law.
(ix) Calculate the work done in blowing a soap bubble of radius 10 cm and surface tension 30 dyne/cm.
(x) Define centre of mass.
(xi) What do you mean by radius of gyration?
(xii) The position vectors of two particles of masses 1 kg and 3 kg at any instant are $(2 \hat{i}+5 \hat{j}+13 \hat{k}) \mathrm{m}$ and $(-6 \hat{i}+4 \hat{j}-2 \hat{k}) \mathrm{m}$ respectively. Calculate the position vector of centre of mass at that instant.
$1 \times 10=10$

[^0]: (E) Distinguish between streamline and turbulent flow.

