B.A./B.Sc. (Statistics) Semester-I (C.B.S.) Examination

STATISTICS

(Probability Theory)

Compulsory Paper—1

Time : Three Hours]

[Maximum Marks : 50

Note :— All questions are compulsory and carry equal marks.

- 1. (A) Define with an example :
 - (i) A random experiment
 - (ii) Sample space
 - (iii) An event
 - (iv) Exhaustive events
 - (v) Impossible event.
 - (B) Give axiomatic and classical definitions of probability. Show that the classical definition of probability satisfies all the axioms of probability. 5+5

OR

- (E) Give relative frequency approach to probability. State its limitations. Let A, B and C be three events in the sample space. State the expression for the events noted below in the context of A, B and C.
 - (i) Only A occurs
 - (ii) Both A and B but not C occur
 - (iii) All three events occur
 - (iv) At least one of the three events occur
 - (v) At least two events occurs
 - (vi) None occurs.
- (F) Two fair dice are thrown. Let A be the event that the sum of the points on the faces shown is odd and B is the event of at least one ace (i.e. number 1). State :
 - (i) Complete sample space
 - (ii) Events A, B, \overline{B} , A \cap B, A \cup B and A $\cap \overline{B}$ and find their probabilities.
 - (iii) Also find P(A|B) and P(B|A).
- 2. (A) State and prove multiplicative law of probability for 3 events.
 - (B) Define conditional probability. Show that it satisfies axioms of probability.
 - (C) Define mutual independence of n events. Show that the number of conditions to be satisfied for mutual independence of n events is $2^n n 1$.
 - (D) A husband and wife appear in an interview for two vacancies. The probability of husband's

selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$. What is the probability that :

- (i) Only one of them will be selected
- (ii) Both of them will be selected
- (iii) None of them will be selected ?

Assume that the selections of husband and wife are independent

OR

- (E) If the events A, B and C are mutually independent, then show that $(A \cup B)$ and C are independent. If $(\overline{A} \cap B) = 0.1$, $P(A \cap \overline{B}) = 0.6$ and $P(A \cap B) = 0.2$, find P(A|B).
- (F) State and prove Bayes' theorem.

www.rtmnuonline.com

5+5

5 + 5

 $2^{1/2} \times 4 = 10$

www.rtmnuonline.com 3. (A) Define c.d.f

(A) Define c.d.f. of a r.v. Show that it is non-decreasing. The probability mass function of a r.v. X is given below : Х 0 2 3 4 5 6 7 8 1 P[X = x]а 3a 5a 7a 9a 11a 13a 15a 17a (i) Determine the value of a (ii) Find P(X < 2), $P(X \ge 6)$, P(3 < X < 5)(iii) Find distribution function of X. (B) For a discrete r.v. define : (i) Probability mass function (ii) Expected value. Let p.m.f. of a r.v. be given by : Х -3 6 9 $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{3}$ p(x)Find : (i) E(X) (ii) E[2X + 5](iii) V(X). OR (E) Find the probability distribution of the r.v. X and also find the following probabilities :

(i) $P[X \ge 4]$

- (ii) $P[X \le 10]$
- (iii) P[X > 10]
- (iv) $P[1 \le X < 6]$, if the C.D.F of r.v. X is given by :

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{3} & 1 \le x < 4 \\ \frac{1}{2} & 4 \le x < 6 \\ \frac{5}{6} & 6 \le x < 10 \\ 1 & x \ge 10 \end{cases}$$

(F) Let f(x) be the p.d.f. of r.v. X

$$f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Show that :

$$E[X^{r}] = \frac{2}{(r+1)(r+2)}$$

Hence find :

(i) Mean

(ii) Variance of r.v. X.

5 + 5

5 + 5

www.rtmnuonline.com 4. (A) Define

- (i) rth raw moment
- (ii) rth central moment of a r.v.

Derive the expression for rth central moment in terms of raw moments. Hence obtain the expressions for second, third and fourth central moments in terms of raw moments.

OR

- (E) Define the m.g.f. of r.v. X. Show that it generates moments about origin.
- (F) Define the p.g.f. of a r.v. Show how the mean and the variance of a r.v. can be calculated from it.
- (G) The first four moments of a probability distribution about the origin are 1, 4, 10 and 46 respectively. Obtain μ_2 , μ_3 , β and γ_1 on the basis of information given. Comment upon the nature of the distribution.
- (H) Let X be a r.v. with p.g.f. p(s), find the generating function of :

(i)
$$X + 1$$

(ii) 2X.

5. Solve any **TEN** of the following :

- (A) State the limitations of classical definition of probability.
- (B) Define mutually exclusive events.
- (C) A bag contains 3 red, 6 white and 7 blue balls. What is the probability that two balls drawn are white and blue ?
- (D) For any 3 events A, B and C :

$$P\left[(A \cap \overline{B})|C\right] + P\left[(A \cap B)|C\right] = P(A|C)$$

- (E) Define partition of the sample space.
- (F) Two events A and B are such that $P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$. Are A and B independent

events ?

- (G) For what values of a and b will V(aX + b) = V(X) + b?
- (H) Find the constant C such that the function

$$f(x) = \begin{cases} Cx^2; & 0 < x < 3\\ 0; & \text{otherwise} \end{cases}$$

is a p.d.f. of X.

(I) If
$$f(x) = \frac{x}{2}$$
; $0 < x \le 2$

= 0; otherwise

Find $P[1 \le X \le 2]$.

(J) Let X be a r.v. with following p.m.f :

Find mode of the distribution.

(K) Define Bowley's coefficient of skewness.

(L) If
$$f(x) = \frac{1}{2}$$
; $-1 < x < 1$

= 0; otherwise

Find median of the distribution.

1×10=10

 $21/2 \times 4 = 10$

www.rtmruonline.com