# Bachelor of Science (B.Sc.) Semester-II Examination <br> MATHEMATICS (GEOMETRY, DIFFERENTIAL AND DIFFERENCE EQUATIONS) <br> <br> Optional Paper-1 

 <br> <br> Optional Paper-1}

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative ( in full.

## UNIT-I

1. (A) Obtain the equation of the sphere which touches the sphere

$$
4\left(x^{2}+y^{2}+z^{2}\right)+10 x-25 y-2 z=0
$$

at $(1,2,-2)$ and passes through the point $(-1,0,0)$.
(B) Obtain the equation of the sphere having the circle :

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+10 y-4 z-8=0, x+y+z=3 \text { as the great circle. } \tag{6}
\end{equation*}
$$ OR

(C) Find the equation of a cone whose vertex is the point $(1,-2,1)$, axis is the line $\frac{x-1}{2}=\frac{y+2}{1}=\frac{z-1}{2}$ and semi-vertical angle is $60^{\circ}$.
(D) Find the equation of the right circular cylinder of radius 2 whose axis pass through the point $(1,0,3)$ and has direction cosines proportional to $(2,3,1)$.

## UNIT-II

2. (A) Solve : $x \frac{d y}{d x}+y=x \log x$.
(B) Show that the differential equation :

$$
\left(2 x y^{3}+y \cos x\right) d x+\left(3 x^{2} y^{2}+\sin x\right) d y=0
$$

is exact and hence solve it.

## OR

(C) Solve : $x \frac{d y}{d x}+y=x^{4} y^{3}$ by reducing to the linear form.
(D) Solve : $3 x^{4} p^{2}-x p-y=0$, where $p \equiv \frac{d y}{d x}$.

## UNIT-III

3. (A) Solve : $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{2 x} \cdot \sin x$.

6
(B) Solve :

$$
\begin{equation*}
\left(x^{2} D^{2}-x D+2\right) y=x \log x, \text { where } D \equiv \frac{d}{d x} \tag{6}
\end{equation*}
$$

OR
(C) Solve (y) ${ }^{(2)}+4 y=4 \tan 2 x$ by the method of variation of parameters.
(D) Solve $x y^{(2)}-(x-2) y^{(1)}-2 y=x^{3}$ by using a known solution $y_{1}=e^{x}$ included in its complementary function.

## UNIT—IV

4. (A) From the difference equation by eliminating arbitrary constants $A$ and $B$ from :

$$
\begin{equation*}
y_{n}=A .3^{n}-\text { B. } 5^{n} . \tag{6}
\end{equation*}
$$

(B) Solve : $u_{x+2}-4 u_{x+1}+4 u x=x^{2} \cdot 2^{x}$.

## OR

(C) Solve the difference equation :

$$
\begin{equation*}
\left(E^{2}-5 E+6\right) y_{n}=4^{n}\left(n^{2}+n-7\right) \tag{6}
\end{equation*}
$$

(D) Solve :

$$
\begin{equation*}
u_{x+2}-2 \cos \alpha \cdot u_{x+1}+u_{x}=\cos (\alpha x) \text {, where } \alpha \text { is constant. } \tag{6}
\end{equation*}
$$

## QUESTION-V

5. (A) Obtain the equation of the sphere described on the join of the points $(2,1,1)$ and $(5,6,9)$ as diameter.
(B) Define right circular cone and right circular cylinder.
(C) Solve : $\mathrm{xp}^{2}-\mathrm{yp}+\mathrm{a}=0$, where $\mathrm{p} \equiv \frac{\mathrm{d}}{\mathrm{dx}}$.
(D) Find the integrating factor for the differential equation $y d x-x d y+x d x=0$ by inspection and then solve it.
(E) Solve : $\left(D^{3}+5 D^{2}-5 D-1\right) y=0$, where $D \equiv \frac{d}{d x}$.
(F) Find the particular integral of :

$$
\left(\mathrm{D}^{2}-3 \mathrm{D}+2\right) \mathrm{y}=\cos (2 \mathrm{x}+5), \text { where } \mathrm{D} \equiv \frac{\mathrm{~d}}{\mathrm{dx}}
$$

(G) Solve: $2 u_{x+2}+4 u_{x+1}+8 u_{x}=0$.
(H) Define the order of a difference equation and find the order of

$$
y_{n+3}-6 y_{n+2}+11 y_{n+1}-5 y_{n}=\cos n .
$$

