Bachelor of Science (B.Sc.) Semester-II Examination
 MATHEMATICS
 (Vector Calculus and Improper Integrals)
 Optional Paper-2

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) Find the unit tangent vector to any point on the curve $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$. Also determine the unit tangent at the point where $\mathrm{t}=2$.
(B) If $\overline{\mathrm{A}}=2 x z^{2} \overline{\mathrm{i}}-y z \bar{j}+3 x z^{3} \bar{k}$ and $\phi=x^{2} y z$, then find $\bar{\nabla} \times(\phi \overline{\mathrm{A}})$ at point $(1,1,1)$.

OR

(C) Prove that $\mathrm{r}^{\mathrm{n}} \cdot \overline{\mathrm{r}}$ is irrotational. Find the value of n when it is solenoidal.
(D) If $\overline{\mathrm{F}}=(2 x+y) \overline{\mathrm{i}}+(3 y-x) \overline{\mathrm{j}}$, then evaluate $\int_{\mathrm{C}} \overline{\mathrm{F}} \circ \mathrm{d} \overline{\mathrm{r}}$ along the curve C in the xy -plane consisting of the straight lines from $(0,0)$ to $(2,0)$ and then to $(3,2)$.
2. (A) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ over the region R in the positive quadrant for which $x+y \leq 1$.
(B) Evaluate $\int_{0}^{1} \int_{0}^{2 \sqrt{x}} x y d y d x$ by changing the order of integration.

OR

(C) Evaluate $\int_{0}^{4} \int_{\mathrm{y}}^{4} \frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$ dxdy by changing to polar coordinates.
(D) Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$.

UNIT-III

3. (A) If $\overline{\mathrm{F}}=\left(2 x^{2}-3 z\right) \vec{i}-2 x y \vec{j}-4 x \vec{k}$, then evaluate $\iiint_{V}(\vec{\nabla} \circ \vec{F}) d V$, where V is the closed region bounded by the planes $x=0, y=0, z=0$ and $2 x+2 y+z=4$.
(B) Verify Green's theorem in the plane for $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
(C) Evaluate $\iint_{S} \vec{A} \circ \vec{n} d S$, where $\vec{A}=18 z \vec{i}-12 \vec{j}+3 y \vec{k}$ and S is that part of the plane $2 x+3 y+6 z=12$ which is located in the first octant.
(D) Using Divergence theorem, evaluate $\iint_{S} \vec{F} \circ \hat{n} d S$, where $\vec{F}=x^{2} \vec{i}+y^{2} \vec{j}+z^{2} \vec{k}$ and S is the surface of the solid cut off by the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ from the first quadrant.

UNIT-IV

4. (A) Test the convergence of :
(i) $\int_{0}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x$
(ii) $\int_{0}^{\infty} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}} \mathrm{dx}$.
(B) Test for convergence :
(i) $\int_{\pi}^{4 \pi} \frac{\sin \mathrm{x}}{\sqrt[3]{\mathrm{x}-\pi}} \mathrm{dx}$
(ii) $\int_{0}^{1} \frac{\cos x}{x^{2}} d x$

OR

(C) Prove that $\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$.
(D) Given that $\int_{0}^{\infty} \frac{\mathrm{x}^{\mathrm{p}-1}}{1+\mathrm{x}} \mathrm{dx}=\frac{\pi}{\sin \mathrm{p} \pi}$, show that $\sqrt{\mathrm{p}} \sqrt{1-\mathrm{p}}=\frac{\pi}{\sin \mathrm{p} \pi} \quad$ where $0<\mathrm{p}<1$.

Question-V

5. (A) Find $\vec{\nabla} \phi$ if $\phi=\frac{1}{r}$, where $r=|\vec{r}|$ and $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$.
(B) Show that if $\mathrm{F}_{1} \mathrm{dx}+\mathrm{F}_{2} \mathrm{dy}+\mathrm{F}_{3} \mathrm{dz}$ is exact differential of function ϕ then $\vec{\nabla} \times \overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{O}}$, where $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$.
(C) Evaluate $\int_{0}^{1} \int_{0}^{x}(x+2) d x d y$.
(D) Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} r d r d \theta$.
(E) Find the area of the ellipse $\mathrm{x}=2 \cos \theta, \mathrm{y}=3 \sin \theta$ by using Green's theorem in the plane.
(F) State Stoke's theorem for the surface S bounded by simple closed curve C . 1 1⁄2122
(G) Prove that $\sqrt{1}=1$. $11 / 2$
(H) Evaluate using Beta-Gamma function $\int_{0}^{\infty} \frac{x^{4}}{(1+x)^{9}} d x$.
