Bachelor of Science (B.Sc.) Semester—II (C.B.S.) Examination MATHEMATICS

(Vector Calculus and Improper Integrals)

Compulsory Paper—2

Time: Three Hours] [Maximum Marks: 60

- **N.B.** :— (1) Solve all the **FIVE** questions.
 - (2) All questions carry equal marks.
 - (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) If a particle moves along a curve whose parametric equations are :

$$x = e^{-t}$$
, $y = 2 \cos 3t$, $z = 2 \sin 3t$,

where t is the time, then:

- (i) Determine its velocity and acceleration at any time t.
- (ii) Find the magnitudes of the velocity and acceleration at the time t = 0.
- (B) If $\overline{F} = (3x^2y z)\hat{i} + (xz^3 + y^4)\overline{i} 2x^3z^2\overline{k}$, the find:
 - (i) $\overline{\nabla} (\overline{\nabla} \circ \overline{F})$
 - (ii) $\overline{\nabla} \times \overline{F}$.

OR

- (C) Show that $\overline{F} = (2xy + z^3)\overline{i} + x^2\overline{j} + 3xz^2\overline{k}$ is irrotational. Find a scalar potential ϕ such that $\overline{F} = \overline{\nabla}\phi$.
- (D) If $\overline{A} = (3x^2 + 6y)\overline{i} 14yz\overline{j} + 20xz^2\overline{k}$. Then evaluate $\int_C \overline{A} \circ d\overline{r}$ from (0, 0, 0) to (1, 1, 1) along the path $C: x = t, y = t^2$.

UNIT—II

- 2. (A) Evaluate $\iint_R xy \, dxdy$ over the region R in the xy-plane bounded by the circle $x^2 + y^2 = 4$ in the first quadrant.
 - (B) Evaluate $\int_{0}^{a} \int_{v}^{a} \frac{x}{x^2 + y^2} dxdy$ by changing the order of the integration.

OR

- (C) Evaluate $\iint_{R} (x^2 + y) dxdy$ by changing into polar coordinates, where R is the region $x^2 + y^2 \le 1$.
- (D) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx dy dz$.

UNIT—III

(A) Evaluate $\iiint x^2y \, dV$, where V is the closed region bounded by the planes :

$$x + y + z = 1, x = 0, y = 0, z = 0.$$

(B) Evaluate $\oint (y - \sin x) dx + \cos x dy$ by using Green's theorem in a plane, where C is the triangle

in xy-plane with vertices
$$(0, 0)$$
, $(\frac{\pi}{2}, 0)$, $(\frac{\pi}{2}, 1)$.

- (C) Evaluate $\iint_S (\overline{\nabla} \times \overline{A}) \circ \overline{n} \, dS$, where $\overline{A} = (x^2 + y 4)\overline{i} + 3xy \, \overline{j} + (2xz + z^2) \, \overline{k}$ and S is the surface of the hemisphere $x^2 + y^2 + z^2 = 16$ above the xy-plane. 6
- (D) Evaluate $\iint_S \overline{F} \circ \overline{n} \, dS$, where $\overline{F} = 4xz\overline{i} y^2\overline{j} + yz\overline{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 by Divergence theorem. 6

(A) By quotient test for integrals, test the convergence of :

(ii) $\int_{-\infty}^{\infty} \frac{\log x}{x + a} dx$,

where a is a positive integer.

6

(B) If $\int_{a}^{\infty} |f(x)| dx$ convergens, then prove that $\int_{a}^{\infty} f(x) dx$ converges. Hence prove that $\int_{0}^{\infty} \frac{\cos x}{x^2 + 1} dx$ 6 is convergent.

OR

(C) Prove that:

(ii)
$$\beta(m, n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$
.

(D) Prove the relation:

$$\beta(m,n) = \frac{\lceil m \rceil \lceil n}{\lceil m+n \rceil}.$$

Question—V

- 5. (A) Find $\overline{\nabla} \phi$ if $\phi = \log r$, where $r = |\overline{r}|$ and $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$.
 - (B) Evaluate $\int_{C} (2x + y^2) dx + (3y 4x) dy$ from (0, 0) to (1, 1) along the parabolic path $C: y = x^2$.
 - (C) Evaluate $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r dr d\theta.$ 1½
 - (D) Evaluate $\iint_{0}^{1} \iint_{0}^{x} dz \, dy \, dx$. 1½
 - (E) Apply Green's theorem to show that area bounded by a simple closed curve C is $\frac{1}{2} \oint_C x \, dy y dx$.
 - (F) If S is any closed surface enclosing a volume V and $\overline{A} = ax\overline{i} + by\overline{j} + cz\overline{k}$, then prove that $\iint_S \overline{A} \circ \overline{n} \, dS = (a + b + c)V \text{ by divergence theorem.}$
 - (G) Test the convergence of $\int_{2}^{\infty} \frac{x^2 1}{\sqrt{x^6 + 16}} dx$ by comparison test. 1½
 - (H) Evaluate $\beta\left(\frac{1}{2}, \frac{3}{2}\right)$.

