www.rtmnuonline.com

Time: Three Hours]

N.B.:— (1) All questions are compulsory.

of 4×10⁴ A/m?

NRJ/KW/17/3048

[Maximum Marks: 50

2

Bachelor of Science (B.Sc.) Semester–II (C.B.S.) Examination PHYSICS (GRAVITATION, ASTROPHYSICS, MAGNETISM AND MAGNETOSTATICS) Compulsory Paper—2

1.	(3) Draw neat diagrams wherever necessary. EITHER	
	(A) State and explain Kepler's laws of planetary motion. Show that the square of time pe	riod of
	revolution of a planet is proportional to the cube of semi-major axis of the orbit.	5
	(B) (i) Obtain an expression for gravitational potential due to a point mass.	3
	(ii) Calculate the gravitational potential due to a point mass of 400 kg. at a distance of	5.0 m,
	if $G = 6.7 \times 10^{-11} \text{ N m}^2/\text{kg}^2$.	2
	OR	
	(C) Obtain an expression for intensity of gravitational field due to a solid sphere at a point	outside
	the sphere.	21/2
	(D) Derive Newton's law of gravitation from Kepler's laws.	21/2
	(E) Show that the gravitational flux enclosed by the closed surface is $\phi = -4\pi$ G.M.	21/2
	(F) What is the gravitational potential of a body of mass 0.2 kg at a height of 1600 km about	ve the
	surface of earth	
	$(G = 6.7 \times 10^{-11} \text{ kg Nm}^2/\text{kg}^2, \text{ mass of Earth} = 6 \times 10^{24} \text{ kg radius of Earth} = 6400 \text{ M}^2$	kms).
	933	21/2
2.	EITHER	
	(A) Describe the interior of the Sun.	5
	(B) (i) Derive the expression for mass of the sun.	3
	(ii) Calculate the mass of Jupiter if one of the satellites of planet Jupiter has time	period
	1.769 days and orbits in a circular orbit of radius 4.22×108m.	2
	OR	
	(C) What is a planet ? State the characteristics of a planet.	21/2
	(D) Write a short note on Corona.	21/2
	(E) Explain in brief:	
	(i) White dwarfs and	
	(ii) Black holes	21/2
	(F) Find the temperature of a star, blue in colour, having wavelength of maximum er	nission
	as 450 nm.	21/2
3.	EITHER	
	(A) Discuss Langevin's theory of paramagnetism and obtain on expression for paramagnetic suscep	tibility.
		5
	(B) (i) Compare the characteristics of diamagnetic and paramagnetic substances.	3
	(ii) The transition temperature for lead is 7.26 K. The maximum critical field for the r	naterial
	is 8×10 ⁵ A/m. What is the temperature of lead in superconducting state in magneti	c field

OR

- (C) What do you understand by ferro magnetic domains? Explain ferromagnetism on the basis of domain theory. 2½
- (D) State and derive Curie-Weiss law.

21/2

 $2\frac{1}{2}$

- (E) Explain the terms critical temperature and critical magnetic field for superconductor.
- (F) The susceptibility of paramagnetic FeCl₃ is 0.0037 at 27°C. What will be the value of its susceptibility at 300°K and 400°K?

4. **EITHER**

- (A) State Biot-Savart law and use it to find the intensity of magnetic field near a straight conductor carrying current.
- (B) (i) What is gyromagnetic ratio? Show that the ratio of magnetic moment to the angular momentum of an electron revolving in an orbit is equal to e/2m, where symbols have their usual meaning.
 - (ii) Calculate the magnetic field intensity at a distance of 5 meter from an infinite straight conductor carrying current of 100 A. Given: $-\frac{\mu_o}{4p} = 10^{-7} \frac{Nm}{A^2}$

OR

- (C) Explain the magnetic induction on the basis of the force acting on the test charge in the magnetic field. Write its SI unit.
- (D) Obtain an expression for the magnetic field at the centre of an infinite solenoid. 2½
- (E) State Gauss' law of magnetisation. Derive the differential form of Gauss' law.
- (F) Calculate the flux density and magnetic moment per unit volume if magnetic field of intensity 5×10^5 A/m is applied and magnetic susceptibility of Si is -0.4×10^{-5} . [μ_o = $4\pi\times10^{-7}$ SI units] $2\frac{1}{2}$

5. Attempt any **TEN** questions :

- (i) Define gravitational constant G.
- (ii) Why acceleration due to gravity is maximum at the poles and minimum at the equator?
- (iii) Calculate the distance of separation between two cars, if gravitational attraction of two cars is $3.2\times10^{-6}N$ and masses of the cars are 1000 kg and 1200 kg. (G = $6.67\times10^{-11}\ Nm^2/kg^2$).
- (iv) Define solar constant
- (v) Distinguish between a planet and a star.
- (vi) What is meant by constellation?
- (vii) What is Meissner effect?
- (viii) Write any two applications of ferrites.
- (ix) Calculate the pole strength of the magnet having magnetic dipole moment 16 Am² and magnetic length 0.4m.
- (x) What is Toroid?
- (xi) What is Lorentz force?
- (xii) A long wire carries a current of 5mA. Find the line integral of B around the path enclosing the

wire.
$$\left(\frac{\mu_0}{4\pi} = 10^{-7} \text{ S.I. units}\right)$$
 1×10=10