Bachelor of Science (B.Sc.) Semester-II (C.B.S.) Examination
 PHYSICS (GRAVITATION, ASTROPHYSICS, MAGNETISM AND MAGNETOSTATICS) Compulsory Paper-2

Time : Three Hours]
[Maximum Marks : 50
N.B. :- (1) All questions are compulsory.
(3) Draw neat diagrams wherever necessary.

1. EITHER

(A) State and explain Kepler's laws of planetary motion. Show that the square of time period of revolution of a planet is proportional to the cube of semi-major axis of the orbit.
(B) (i) Obtain an expression for gravitational potential due to a point mass.
(ii) Calculate the gravitational potential due to a point mass of 400 kg . at a distance of 5.0 m , if $G=6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.

OR

(C) Obtain an expression for intensity of gravitational field due to a solid sphere at a point outside the sphere.
(D) Derive Newton's law of gravitation from Kepler's laws.
(E) Show that the gravitational flux enclosed by the closed surface is $\phi=-4 \pi$ G.M.
(F) What is the gravitational potential of a body of mass 0.2 kg at a height of 1600 km above the surface of earth
$\left(\mathrm{G}=6.7 \times 10^{-11} \mathrm{~kg} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right.$, mass of Earth $=6 \times 10^{24} \mathrm{~kg}$ radius of Earth $\left.=6400 \mathrm{kms}\right)$.

2. EITHER

(A) Describe the interior of the Sun.
(B) (i) Derive the expression for mass of the sun.
(ii) Calculate the mass of Jupiter if one of the satellites of planet Jupiter has time period 1.769 days and orbits in a circular orbit of radius $4.22 \times 10^{8} \mathrm{~m}$.

OR

(C) What is a planet? State the characteristics of a planet. $2 \frac{1}{2}$
(D) Write a short note on Corona. $2 \frac{1122}{2}$
(E) Explain in brief :
(i) White dwarfs and
(ii) Black holes
(F) Find the temperature of a star, blue in colour, having wavelength of maximum emission as 450 nm .

3. EITHER

(A) Discuss Langevin's theory of paramagnetism and obtain on expression for paramagnetic susceptibility.
(B) (i) Compare the characteristics of diamagnetic and paramagnetic substances. 3
(ii) The transition temperature for lead is 7.26 K . The maximum critical field for the material is $8 \times 10^{5} \mathrm{~A} / \mathrm{m}$. What is the temperature of lead in superconducting state in magnetic field of $4 \times 10^{4} \mathrm{~A} / \mathrm{m}$?
(C) What do you understand by ferro magnetic domains ? Explain ferromagnetism on the basis of domain theory. $2 \frac{1}{2}$
(D) State and derive Curie-Weiss law. $2 \frac{1122}{2}$
(E) Explain the terms critical temperature and critical magnetic field for superconductor. 2½
(F) The susceptibility of paramagnetic FeCl_{3} is 0.0037 at $27^{\circ} \mathrm{C}$. What will be the value of its susceptibility at $300^{\circ} \mathrm{K}$ and $400^{\circ} \mathrm{K}$?

4. EITHER

(A) State Biot-Savart law and use it to find the intensity of magnetic field near a straight conductor carrying current.
(B) (i) What is gyromagnetic ratio? Show that the ratio of magnetic moment to the angular momentum of an electron revolving in an orbit is equal to $\mathrm{e} / 2 \mathrm{~m}$, where symbols have their usual meaning.
(ii) Calculate the magnetic field intensity at a distance of 5 meter from an infinite straight

$$
\begin{equation*}
\text { conductor carrying current of } 100 \mathrm{~A} .\left[\text { Given: }-\frac{\mu_{\mathrm{o}}}{4 \mathrm{p}}=10^{-7} \frac{\mathrm{Nm}}{\mathrm{~A}^{2}}\right] \tag{2}
\end{equation*}
$$

OR

(C) Explain the magnetic induction on the basis of the force acting on the test charge in the magnetic field. Write its SI unit.
(D) Obtain an expression for the magnetic field at the centre of an infinite solenoid. $2 \frac{1}{2}$
(E) State Gauss' law of magnetisation. Derive the differential form of Gauss' law. 2½
(F) Calculate the flux density and magnetic moment per unit volume if magnetic field of intensity $5 \times 10^{5} \mathrm{~A} / \mathrm{m}$ is applied and magnetic susceptibility of Si is $-0.4 \times 10^{-5} . \quad\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{SI}\right.$ units $]$
5. Attempt any TEN questions :
(i) Define gravitational constant G.
(ii) Why acceleration due to gravity is maximum at the poles and minimum at the equator ?
(iii) Calculate the distance of separation between two cars, if gravitational attraction of two cars is $3.2 \times 10^{-6} \mathrm{~N}$ and masses of the cars are 1000 kg and 1200 kg .
($\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$).
(iv) Define solar constant
(v) Distinguish between a planet and a star.
(vi) What is meant by constellation ?
(vii) What is Meissner effect ?
(viii) Write any two applications of ferrites.
(ix) Calculate the pole strength of the magnet having magnetic dipole moment $16 \mathrm{Am}^{2}$ and magnetic length 0.4 m .
(x) What is Toroid?
(xi) What is Lorentz force ?
(xii) A long wire carries a current of 5 mA . Find the line integral of B around the path enclosing the wire. $\left(\frac{\mu_{0}}{4 \pi}=10^{-7}\right.$ S.I. units $)$

