NJR/KS/18/3101

Bachelor of Science (B.Sc.) Semester–III (C.B.S.) Examination BIOTECHNOLOGY (METABOLISM)

Paper—I

Tim	e: Three Hours]	[Maximum Marks : 50
Not	$\mathbf{e} := (1)$ All questions are compulsory and carry equal marks.	
	(2) Draw structures and diagrams wherever necessary.	
1.	Describe Gluconeogenesis in detail.	10
	OR	
	Write notes on:	
	(a) Entry of fructose into glycolysis.	5
	(b) Anaerobic fate of pyruvate and its significance.	5 5
2.	Describe TCA cycle and its regulation.	10
	OR)
	Write notes on:	
	(a) Structure of mitochondria.	5 5
	(b) ETC.	5
3.	Describe the reactions of fatty acid-synthase complex.	10
	OR	
	Write notes on:	
	(a) Ketogenesis.	5
	(b) β-oxidation of oleic acid.	5
4.	Describe the De Novo biosynthesis of purine ribonucleotides.	10
	OR	
	Write notes on :	
	(a) Salvage pathways for purines.	$2\frac{1}{2}$
	(b) Compartmentation of Urea cycle.	$2\frac{1}{2}$
	(c) Transmethylation.	$2\frac{1}{2}$
	(d) Decarboxylation of amino acids.	$2\frac{1}{2}$
5.	Solve any ten :	
	(i) What is enthalpy?	1
	(ii) Define ketogenesis.	1
	(iii) Name the complex of oxidative phosphorylation.	1
	(iv) How many ATPs are produced in aerobic glycolysis?	1
	(v) Define Transamination.	1
	(vi) What is meant by redox potential?	1
	(vii) What is Ketoacidosis?	1
	(viii) Write any one anaplerotic reaction.	1
	(ix) Give any one example of multienzyme complex.	1
	(x) Define Omega Oxidation.	1
	(xi) Name the key regulatory enzyme of urea cycle.	1
	(xii) Name the enzyme complex which converts ribonucleotides to deoxyri	ibonucleotides. 1