Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination MATHEMATICS (Advanced, Calculus, Sequence and Series) Paper-I

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (a) If a function $f(x)$ is continuous on $[a, b]$ and derivable in (a, b), then prove that there exists a point $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that :

$$
\begin{equation*}
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \tag{6}
\end{equation*}
$$

(b) By using Lagrange's mean value theorem show that :
$\frac{\mathrm{x}}{1+\mathrm{x}}<\log (1+\mathrm{x})<\mathrm{x}, \quad \mathrm{x}>0$
Hence show that :
$0<\frac{1}{\log (1+\mathrm{x})}-\frac{1}{\mathrm{x}}<1, \forall \mathrm{x}>0$.

OR

(c) If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=A$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=B$ then prove that
$\lim _{(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)}[\mathrm{f}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{g}(\mathrm{x}, \mathrm{y})]=\mathrm{A} \cdot \mathrm{B}$.
(d) Expand by Taylor's series :
$f(x, y)=x^{2}+x y+y^{2}$ in powers of $(x-2)$ and $(y-3)$.

UNIT-II

2. (a) Find the envelope of the family of lines $a x \sec \alpha-b y \operatorname{cosec} \alpha=a^{2}-b^{2}$, where α being a parameter and a, b are constants.
(b) Discuss maxima or minima of

$$
u=x^{3}+y^{3}-3 a x y
$$

OR

(c) Find the maxima or minima of u, when $u=2 x y-3 x^{2} y-y^{3}+x^{3} y+x y^{3}$.
(d) Find the maximum and minimum values of $x^{2}+y^{2}+z^{2}$ subject to the conditions $x+y+z=1$ and $x y z+1=0$, by using Lagrange's multiplier method.

UNIT-IIII

3. (a) Prove that every convergent sequence has a unique limit.
(b) Show that the sequence whose $\mathrm{n}^{\text {th }}$ term is $\left\langle\frac{5 \mathrm{n}+4}{2 \mathrm{n}+1}\right\rangle$ is bounded, monotonic decreasing and tends to the limit $5 / 2$.

OR

(c) If a sequence $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ is a Cauchy sequence then prove that it is convergent.
(d) If $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ is a sequence in R, where

$$
\mathrm{x}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots+\frac{1}{\mathrm{n}} .
$$

Evaluate $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|$. Verify whether this sequence satisfie the Cauchy criterion.

UNIT-IV

4. (a) Test the convergence of the series :
(i) $\sum_{\mathrm{n}=1}^{\infty}\left[\sqrt{\mathrm{n}^{4}+1}-\sqrt{\mathrm{n}^{4}-1}\right]$ by comparison test.
(ii) $\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{n}}{\mathrm{n}^{2}+1}$ by integral test.
(b) Test the convergence of the seres $\sum_{n=1}^{\infty} \frac{n^{3}+\mathrm{a}}{2^{n}+\mathrm{a}}$ by ratio test.

OR

(c) Show that the alteruating series $\frac{2}{1}-\frac{3}{2^{2}}+\frac{4}{3^{2}}-\frac{5}{4^{2}}+\ldots$ is conditionally convergent.
(d) Test the convergence of the series $1+\frac{3}{2} x+\frac{5}{9} x^{2}+\frac{7}{28} \cdot x^{3}+\ldots .+\frac{2 n+1}{n^{3}+1} x^{n}+\ldots \ldots$. by ratio test.

Question-V

5. (a) Verify Rolle's theorem for the function $f(x)=\frac{\sin x}{e^{x}}, x \in[0, \pi]$.
(b) Examine whether the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is continuous at $(1,2)$, where

$$
\begin{aligned}
f(x, y) & =x^{2}+4 y & & \text { when }(x, y) \neq(1,2) \\
& =0 & & \text { when }(x, y)=(1,2)
\end{aligned}
$$

(c) Find the envelope of
$\mathrm{y}=\mathrm{mx}+\mathrm{a} \sqrt{1+\mathrm{m}^{2}}$, where m is a parameter.
(d) Define : Stationary point and Saddle point of the function $f(x, y)$.
(e) Find $\eta_{0} \in N$ such that:

$$
\left|\frac{2 n}{n+3}-2\right|<\frac{1}{6}
$$

(f) Show that the sequence $<\mathrm{x}_{\mathrm{n}}>$ where $\mathrm{x}_{\mathrm{n}}=\frac{3 \mathrm{n}^{2}+1}{3 \mathrm{n}^{2}-4}$ converges to 1 .
(g) Show that the series $\sum_{\mathrm{n}=2}^{\infty} \frac{1}{(\log \mathrm{n})^{\mathrm{n}}}$ is divergent by using root test.
(h) Show that an alternating series $\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}-1} \frac{1}{\mathrm{n}^{2}}$ is absolutely convergent.

