Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination
 MATHEMATICS (Differential Equations and Group Homomorphism)
 Paper-II

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$. Hence deduce, $x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$.
(B) Prove that:
(i) $\frac{d}{d x}\left(J_{n}^{2}+J_{n+1}^{2}\right)=2\left[\frac{n}{x} J_{n}^{2}-\left(\frac{n+1}{n}\right) J_{n+1}^{2}\right]$,
(ii) $\mathrm{J}_{0}^{2}+2\left(\mathrm{~J}_{1}^{2}+\mathrm{J}_{2}^{2}+\ldots\right)=1$.

OR
(C) Prove that $\int_{-1}^{1} P_{m}(x) \cdot P_{n}(x) d x=0$; if $m \neq n$.
(D) Prove the recurrence formula :

$$
\begin{equation*}
n P_{n}=(2 n-1) \times P_{n-1}-(n-1) P_{n-2}, n \geq 2 \tag{6}
\end{equation*}
$$

2. (A) If $L[f(t)]=F(s)$, then prove that:

$$
\mathrm{L}\left[\mathrm{t}^{\mathrm{n}} \mathrm{f}(\mathrm{t})\right]=(-1)^{\mathrm{n}} \frac{\mathrm{~d}^{\mathrm{n}}}{\mathrm{ds}^{\mathrm{n}}} \mathrm{~F}(\mathrm{~s}), \mathrm{n}=1,2,3, \ldots
$$

Hence evaluate $L[t \cdot \sin 2 t]$.
(B) If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then prove that:

$$
\mathrm{L}\left[\frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}}\right]=\int_{\mathrm{s}}^{\infty} \mathrm{F}(\mathrm{~s}) \mathrm{ds} \text {, provided } \lim _{\mathrm{t} \rightarrow 0} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}} \text { exists. }
$$

Hence prove that $L\left[\frac{\sin t}{t}\right]=\tan ^{-1}\left(\frac{1}{s}\right)$.
(C) If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then prove that:

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s \cdot F(s) \text {, provided the limit exists. }
$$

Verify this result for the function $f(t)=e^{-2 t}$.
(D) By using convolution theorem, evaluate :

$$
\mathrm{L}^{-1}\left[\frac{1}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+1\right)}\right] .
$$

3. (A) Solve $y^{\prime \prime}+y^{\prime}-2 y=t$, given that $y(0)=1, y^{\prime}(0)=0$.
(B) Solve $\mathrm{y}^{\prime \prime}+\mathrm{ty}$ ' $\mathrm{y}=0$, given that $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=2$.

OR

(C) Let $\mathrm{u}(\mathrm{x}, \mathrm{t})$ be a function defined for $\mathrm{t}>0$ and $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. Show that:
(i) $\mathrm{L}\left[\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\right]=\mathrm{s} \mathrm{U}-\mathrm{u}(\mathrm{x}, 0)$, where $\mathrm{U}=\mathrm{U}(\mathrm{x}, \mathrm{s})=\mathrm{L}[\mathrm{u}(\mathrm{x}, \mathrm{t})]$.
(ii) $L\left[\frac{\partial^{2} u}{\partial t^{2}}\right]=s^{2} U-s u(x, 0)-u_{t}(x, 0)$, where $u_{t}(x, 0)=\frac{\partial u}{\partial t}$ at $t=0$.
(D) Find the Fourier sine transform of $\mathrm{e}^{|x|}$ and hence show that :

$$
\int_{0}^{\infty} \frac{\mathrm{x} \cdot \sin \mathrm{mx}}{1+\mathrm{x}^{2}} \mathrm{dx}=\frac{\pi}{2} \mathrm{e}^{-\mathrm{m}}, \mathrm{~m}>0
$$

UNIT—IV

4. (A) If N and M are normal subgroups of a group G , then show that is also a normal subgroup of group G.
(B) Let G be a group and N be its normal subgroup. Then prone that the set G / N of all cosets is a group with respect to multiplication of cosets.

OR

(C) Let G be the additive group of real numbers and G be the multiplicative group of positive real numbers. Then show that a mapping $\mathrm{f}: \mathrm{G}^{\prime} \rightarrow \mathrm{G}$ defined by $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}, \forall \mathrm{x} \in \mathrm{G}$ is an isomorphism of G onto G^{\prime}.
(D) Prove that every quotient group G / H of a given group G is a homomorphic image of the group G and also prove that the kernel of homomorphism is H .

QEESTION—V

5. (A) Prove that $\left.\int_{a}^{b} \mathrm{~J}_{0}(\mathrm{x}) \mathrm{J}_{1}(\mathrm{x}) \mathrm{dx}=\mathrm{S}^{2}(\mathrm{a})-\mathrm{J}_{0}^{2}(\mathrm{~b})\right\}$.
(B) Prove that $\mathrm{P}_{2}(\mathrm{x})=\frac{1}{2}\left(3 \mathrm{x}^{2}-1\right)$.
(C) Find $\mathrm{L}^{-1}\left[\frac{12}{4 \mathrm{~s}-8}\right]$.
(D) Prove that:
$\mathrm{L}[\mathrm{af}(\mathrm{t})+\mathrm{bg}(\mathrm{t})]=\mathrm{a} \mathrm{L}[\mathrm{f}(\mathrm{t})]+\mathrm{b} \mathrm{L}[\mathrm{g}(\mathrm{t})]$,
where $t>0$ and a, b are any constants.
(E) Show that $\mathrm{L}\left[\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right]=\frac{\mathrm{dU}}{\mathrm{dx}}$, where $\mathrm{U}=\mathrm{L}[\mathrm{u}(\mathrm{x}, \mathrm{t})]$.
(F) Find the Fourier sine transform of the function $f(x)=e^{-a x}$.
(G) Let G and G^{\prime} be two groups and $f: G \rightarrow G^{\prime}$ be a homomorphism. Then prove that $f(e)=e^{\prime}$, where e and e^{\prime} are identity elements in group G and G^{\prime} respectively.
$\begin{array}{ll}\text { (H) Find all the generators of a cyclic group } G=\{1,-1, i,-i\} . & 11 / 2\end{array}$
