NKT/KS/17/5108

Bachelor of Science (B.Sc.) Semester—III (C.B.S.) Examination MATHEMATICS (M₅-Advanced Calculus, Sequence and Series)

Paper—I

Time: Three Hours]

[Maximum Marks: 60

Note:—(1) Solve all the **FIVE** questions.

- (2) All questions carry equal marks.
- (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) If two functions f(x) and F(x) are continuous in [a, b] and derivable in (a, b) and F'(x) ≠ 0 for any value of x in [a, b], then prove that there exist at least one value c ∈ (a, b) such that :

$$\frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(c)}{F'(c)}$$

- (B) In the Cauchy's mean value theorem:
 - (i) If $f(x) = \sqrt{x}$, $g(x) = \frac{1}{\sqrt{x}}$, $x \in [a, b]$ then show that the value $c \in (a, b)$ is the geometric mean between a and b, where a, b, > 0.
 - (ii) If $f(x) = \frac{1}{x^2}$, $g(x) = \frac{1}{x}$, $x \in [a, b]$, then show that the value $c \in (a, b)$ is the harmonic mean between a and b, where a, b > 0.

OR

- (C) Let f(x, y) and g(x, y) be defined in the open region DCR². If f(x, y) and g(x, y) both are continuous at $P_o(x_o, y_o) \in D$, then prove that f(x, y) g(x, y) is also continuous at $P_o(x_o, y_o)$.
- (D) Expand $f(x, y) = e^x \cos y$ by Taylor's series in powers of x and y such that it include all terms upto third degree.

1

NXO-12070

(Contd.)

UNIT—II

- 2. (A) Find the envelope of the family of lines $x \cos \alpha + y \sin \alpha = \ell \sin \alpha \cos \alpha$, where α is a parameter. Also give the geometrical interpretation.
 - (B) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$ when $a^m b^n = c^{m+n}$, where a and b are parameters and c is a constant.

OR

- (C) Discuss the maximum and minimum values of $u = x^4 + y^4 2x^2 + 4xy 2y^2$.
- (D) Use Lagrange's multiplier method to find the maximum and minimum values of u = x + y + z subject to the condition $x^2 + y^2 + z^2 = \ell$.

UNIT—III

- 3. (A) If the sequences $\langle y_n \rangle$ and $\langle z_n \rangle$ converge to ℓ and if $y_n \langle x_n \rangle \langle z_n \rangle \langle x_n \rangle \langle$
 - (B) Show that the sequence $\left\langle \frac{n}{n+1} \right\rangle$, \forall $n \in N$, is monotonic increasing, bounded and converges to 1.

OR

- (C) Prove that the sequence $\langle x_p \rangle$ converges if and only if it is a Cauchy sequence.
- (D) Prove that the sequence $\left\langle \frac{e^n}{n} \right\rangle$ is monotonic increasing, bounded below but not bounded above.

UNIT—IV

4. (A) Test the convergence of the series:

$$\sum_{n=1}^{\infty} \frac{\left(n + \sqrt{n}\right)^n}{2^n \ n^{n+1}}$$
 by root test.

(B) Examine the convergence of the series :

$$\frac{x^3}{1.3} + \frac{x^4}{2.4} + \frac{x^6}{3.5} + \dots + \frac{x^{2n}}{n(n+2)} + \dots \text{ by ratio test.}$$

NXO—12070 2 NKT/KS/17/5108

OR

(C) Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is convergent if p>1 and divergent if 0.

6

(D) Prove that the series $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)$ is conditionally convergent.

Question—5

- 5. (A) Verify Rolle's theorem for $f(x) = x^2$ in [-1, 1].
 - (B) Using $\in -\delta$ definition, show that :

$$\lim_{(x, y) \to (1, 2)} (3x + y) = 5.$$
 1½

- (C) Find the envelope of $y = mx + \frac{1}{m}$, where m is a parameter. 1½
- (D) Define extreme point and saddle point of a function f(x, y). 11/2
- (E) Prove that $\lim_{n \to \infty} \frac{2+3\times10^n}{1+5\times10^n} = \frac{3}{5}$.
- (F) Evaluate $\lim_{n \to \infty} (\sqrt{n+1} \sqrt{n})$. 1½
- (G) Test the convergence of the series whose n^{th} term is $\frac{n!}{n^n}$.
- (H) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent by integral test.

NXO—12070 83⁵

0—12070 3 NKT/KS/17/5108