NKT/KS/17/5108

Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination
 MATHEMATICS (M_{5}-Advanced Calculus, Sequence and Series)
 Paper-I

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) If two functions $f(x)$ and $F(x)$ are continuous in [a, b] and derivable in (a, b) and $\mathrm{F}^{\prime}(\mathrm{x}) \neq 0$ for any value of x in $[\mathrm{a}, \mathrm{b}]$, then prove that there exist at least one value $c \in(a, b)$ such that :

$$
\begin{equation*}
\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{\prime}(c)}{F^{\prime}(c)} \tag{6}
\end{equation*}
$$

(B) In the Cauchy's mean value theorem :
(i) If $f(x)=\sqrt{x}, g(x)=\frac{1}{\sqrt{x}}, x \in[a, b]$ then show that the value $c \in(a, b)$ is the geometric mean between a and b, where $a, b,>0$.
(ii) If $f(x)=\frac{1}{x^{2}}, g(x)=\frac{1}{x}, x \in[a, b]$, then show that the value $\mathrm{c} \in(a, b)$ is the harmonic mean between a and b , where $\mathrm{a}, \mathrm{b}>0$.

OR

(C) Let $f(x, y)$ and $g(x, y)$ be defined in the open region DCR^{2}. If $f(x, y)$ and $g(x, y)$ both are continuous at $\mathrm{P}_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right) \in \mathrm{D}$, then prove that $\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{g}(\mathrm{x}, \mathrm{y})$ is also continuous at $\mathrm{P}_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}\right)$.
(D) Expand $f(x, y)=e^{x} \cos y$ by Taylor's series in powers of x and y such that it include all terms upto third degree.

UNIT-II

2. (A) Find the envelope of the family of lines $x \cos \alpha+y \sin \alpha=\ell \sin \alpha \cos \alpha$, where α is a parameter. Also give the geometrical interpretation.
(B) Find the envelope of the straight line $\frac{x}{a}+\frac{y}{b}=1$ when $a^{m} b^{n}=c^{m+n}$, where a and b are parameters and c is a constant.

OR

(C) Discuss the maximum and minimum values of $u=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$.
(D) Use Lagrange's multiplier method to find the maximum and minimum values of $\mathrm{u}=\mathrm{x}+\mathrm{y}+\mathrm{z}$ subject to the condition $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\ell$.

UNIT—III
3. (A) If the sequences $\left\langle\mathrm{y}_{\mathrm{n}}\right\rangle$ and $\left\langle\mathrm{z}_{\mathrm{n}}\right\rangle$ converge to ℓ and if $\mathrm{y}_{\mathrm{n}}<\mathrm{x}_{\mathrm{n}}<\mathrm{z}_{\mathrm{n}} \forall \mathrm{n} \in \mathrm{N}$, then prove that the sequence $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ also converges to 1 .
(B) Show that the sequence $\left\langle\frac{\mathrm{n}}{\mathrm{n}+1}\right\rangle, \forall \mathrm{n} \in \mathrm{N}$, is monotonic increasing, bounded and converges to 1 .

OR

(C) Prove that the sequence $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ converges if and only if it is a Cauchy sequence.
(D) Prove that the sequence $\left\langle\frac{\mathrm{e}^{n}}{\mathrm{n}}\right\rangle$ is monotonic increasing, bounded below but not bounded above.

UNIT-IV

4. (A) Test the convergence of the series :

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(n+\sqrt{n})^{n}}{2^{n} n^{n+1}} \text { by root test. } \tag{6}
\end{equation*}
$$

(B) Examine the convergence of the series :

$$
\frac{\mathrm{x}^{3}}{1.3}+\frac{\mathrm{x}^{4}}{2.4}+\frac{\mathrm{x}^{6}}{3.5}+\ldots \frac{\mathrm{x}^{2 \mathrm{n}}}{\mathrm{n}(\mathrm{n}+2)}+\ldots \text { by ratio test. }
$$

OR

(C) Show that the series $\sum_{\mathrm{n}=2}^{\infty} \frac{1}{\mathrm{n}(\log \mathrm{n})^{\mathrm{p}}}$ is convergent if $\mathrm{p}>1$ and divergent if $0<\mathrm{p} \leq 1$.
(D) Prove that the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$ is conditionally convergent.

Question-5

5. (A) Verify Rolle's theorem for $f(x)=x^{2}$ in $[-1,1]$.
(B) Using $\in-\delta$ definition, show that :

$$
\lim _{(x, y) \rightarrow(1,2)}(3 x+y)=5
$$

(C) Find the envelope of $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$, where m is a parameter.
(D) Define extreme point and saddle point of a function $f(x, y)$.
(E) Prove that $\lim _{\mathrm{n} \rightarrow \infty} \frac{2+3 \times 10^{\mathrm{n}}}{1+5 \times 10^{\mathrm{n}}}=\frac{3}{5}$.
(F) Evaluate $\lim _{\mathrm{n} \rightarrow \infty}(\sqrt{\mathrm{n}+1}-\sqrt{\mathrm{n}})$.
(G) Test the convergence of the series whose $\mathrm{n}^{\text {th }}$ term is $\frac{\mathrm{n} \text { ! }}{\mathrm{n}^{\mathrm{n}}}$.
(H) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent by integral test.

