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Bachelor of Science (B.Sc.) Semester–III (C.B.S.) Examination

MATHEMATICS (M6 Differential Equations and Group Homomorphism)
Paper–II

Time : Three Hours] [Maximum Marks : 60
N.B. :— (1) Solve all five questions.

(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT–I
1. (A) Prove the recurrence relation :
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(B) Prove that :
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OR
(C) Prove that the Legendre’s polynomial Pn(x) is the coefficient of hn in the ascending power series

expansion of (1 – 2xh + h2)–½ , | x | ≤ 1, | h | < 1. 6
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UNIT–II
2. (A) If L[f(t)] = F(s), then prove that :

(i) L[eat f(t)] = F(s – a) and
(ii) L[e–at f(t)] = F(s + a).
Hence show that :

[ ]
( )

.
bas

as
btcoseL

22
at

−−
−

= 6

(B) Find the inverse Laplace transform of ( )( ) .
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OR
(C) If L[f(t)] = F(s), then prove that
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(D) By using convolution theorem, evaluate :
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UNIT–III
3. (A) Solve y"' + 2y'' – y – 2y = 0, given that y(0) = y'(0) = 0. 6

(B) Solve y" + ty' – y = 0, given that y(0) = 0, y'(0) = 2. 6
OR

(C) Solve ,
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∂  given that u(0, t) = 0, u(5, t) = 0, u(x, 0) = sin πx. 6

(D) Find the Fourier sine transform of .0,
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UNIT–IV
4. (A) Prove that a subgroup N of a group G is a normal subgroup of G if and only if each left coset

of N in G is a right coset of N in G. 6

(B) Let G be a group and N be its normal subgroup. Then prove that the set 
N
G

 of all cosets is a

group with respect to multiplication of cosets as Na . Nb = Nab. 6
OR

(C) Let f : G → G′  be a homomorphism of a group G onto a group G′  and K be the Kernel of
f. Then prove that .GK/G ′≅ 6

(D) Let G be the additive group of real numbers and G'  = G. Show that a mapping f : G → G'
defined by f(x) = 12x, ∀ x ∈ G is a homomorphism. Is it 1 – 1 and onto ? Also find Kernel
K of homomorphism f. 6

QUESTION–V
5. (A) Show that (xJ1)' = xJ0. 1½

(B) Show that Pn(1) = 1. 1½
(C) Find L e–4t (sin 5t + 3 cos 2t). 1½
(D) Evaluate L {t . sinh 2t}. 1½

(E) Solve 
dt
dx  + x = 0, x(0) = 2. 1½

(F) Find the Fourier cosine transform of the function
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(G) Prove that every cyclic group is abelian. 1½
(H) If G = {1, –1, i, –i} is a group under multiplication and I, the additive group of all integers. Show

that the function f : I → G defined by f(n) = in, ∀ n ∈ I, is a homomorphism. 1½
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