KNT/KW/16/5109

Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination MATHEMATICS (M_{6} Differential Equations and Group Homomorphism)
 Paper-II

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all five questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Prove the recurrence relation :

$$
\begin{equation*}
2 \mathrm{~nJ}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{~J}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})\right] . \tag{6}
\end{equation*}
$$

(B) Prove that:

$$
\text { (i) } J_{-3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(-\frac{\cos x}{x}-\sin x\right) \text {, (ii) } J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right) \text {. }
$$

OR
(C) Prove that the Legendre's polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ is the coefficient of h^{n} in the ascending power series expansion of $\left(1-2 \mathrm{xh}+\mathrm{h}^{2}\right)^{-1 / 2},|\mathrm{x}| \leq 1,|\mathrm{~h}|<1$.
(D) Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1}$; if $m=n$.
2. (A) If $L[f(t)]=F(s)$, then prove that:
(i) $\mathrm{L}\left[\mathrm{e}^{\text {at }} \mathrm{f}(\mathrm{t})\right]=\mathrm{F}(\mathrm{s}-\mathrm{a})$ and
(ii) $\mathrm{L}\left[\mathrm{e}^{-a t} \mathrm{f}(\mathrm{t})\right]=\mathrm{F}(\mathrm{s}+\mathrm{a})$.

Hence show that:

$$
\mathrm{L}\left[\mathrm{e}^{\mathrm{at}} \cos \mathrm{bt}\right]=\frac{\mathrm{s}-\mathrm{a}}{(\mathrm{~s}-\mathrm{a})^{2}-\mathrm{b}^{2}} .
$$

(B) Find the inverse Laplace transform of $\frac{s^{2}-s-2}{s(s+3)(s-2)}$.

OR
(C) If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then prove that

$$
\mathrm{L}\left[\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{u}) \mathrm{du}\right]=\frac{\mathrm{F}(\mathrm{~s})}{\mathrm{s}}
$$

Hence find $L\left[\int_{0}^{t} \frac{\sin u}{u} d u\right]$.
(D) By using convolution theorem, evaluate :

$$
\mathrm{L}^{-1}\left[\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+4\right)^{2}}\right] .
$$

UNIT-III

3. (A) Solve $y^{\prime \prime \prime}+2 y^{\prime \prime}-y-2 y=0$, given that $y(0)=y^{\prime}(0)=0$.6
(B) Solve $y^{\prime \prime}+$ ty' $-\mathrm{y}=0$, given that $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=2$.
(C) Solve $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=3 \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$, given that $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(5, \mathrm{t})=0, \mathrm{u}(\mathrm{x}, 0)=\sin \pi \mathrm{x}$.
(D) Find the Fourier sine transform of $\frac{\mathrm{e}^{-\lambda x}}{\mathrm{x}}, \lambda>0$.

UNIT-IV

4. (A) Prove that a subgroup N of a group G is a normal subgroup of G if and only if each left coset of N in G is a right coset of N in G.
(B) Let G be a group and N be its normal subgroup. Then prove that the set $\frac{\mathrm{G}}{\mathrm{N}}$ of all cosets is a group with respect to multiplication of cosets as $\mathrm{N}_{\mathrm{a}} . \mathrm{N}_{\mathrm{b}}=\mathrm{N}_{\mathrm{ab}}$.

OR

(C) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a homomorphism of a group G onto a group G^{\prime} and K be the Kernel of f . Then prove that $\mathrm{G} / \mathrm{K} \cong \mathrm{G}^{\prime}$.
(D) Let G be the additive group of real numbers and $G^{\prime}=G$. Show that a mapping $f: G \rightarrow G^{\prime}$ defined by $\mathrm{f}(\mathrm{x})=12 \mathrm{x}, \forall \mathrm{x} \in \mathrm{G}$ is a homomorphism. Is it $1-1$ and onto ? Also find Kernel K of homomorphism f.

QUESTION-V

5. (A) Show that $\left(\mathrm{xJ}_{1}\right)^{\prime}=\mathrm{xJ}_{0}$. $11 / 2$
(B) Show that $P_{n}(1)=1$. $11 / 2$
(C) Find $\mathrm{L} \mathrm{e}^{-4 \mathrm{t}}(\sin 5 \mathrm{t}+3 \cos 2 \mathrm{t})$. $111 / 2$
(D) Evaluate $L\{t \cdot \sinh 2 t\}$. 11⁄2
(E) Solve $\frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{x}=0, \mathrm{x}(0)=2$.
(F) Find the Fourier cosine transform of the function

$$
\mathrm{f}(\mathrm{x})= \begin{cases}1, & 0<\mathrm{x}<\mathrm{a} \\ 0, & \mathrm{x} \geq \mathrm{a}\end{cases}
$$

(G) Prove that every cyclic group is abelian.
(H) If $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ is a group under multiplication and I , the additive group of all integers. Show that the function $\mathrm{f}: \mathrm{I} \rightarrow \mathrm{G}$ defined by $\mathrm{f}(\mathrm{n})=\mathrm{i}^{\mathrm{n}}, \forall \mathrm{n} \in \mathrm{I}$, is a homomorphism.

