KNT/KW/16/5109

Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination MATHEMATICS (\mathbf{M}_6 Differential Equations and Group Homomorphism) Paper-II

Time: Three Hours] [Maximum Marks: 60

N.B. :— (1) Solve all **five** questions.

- (2) All questions carry equal marks.
- (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Prove the recurrence relation:

$$2nJ_{n}(x) = x [J_{n-1}(x) + J_{n+1}(x)].$$

(B) Prove that:

(i)
$$J_{-3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(-\frac{\cos x}{x} - \sin x \right)$$
, (ii) $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$.

OR

(C) Prove that the Legendre's polynomial $P_n(x)$ is the coefficient of h^n in the ascending power series expansion of $(1 - 2xh + h^2)^{-1/2}$, $|x| \le 1$, |h| < 1.

(D) Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1}$$
; if $m = n$.

UNIT-II

- 2. (A) If L[f(t)] = F(s), then prove that :
 - (i) $L[e^{at} f(t)] = F(s a)$ and
 - (ii) $L[e^{-at} f(t)] = F(s + a)$.

Hence show that:

$$L[e^{at} \cos bt] = \frac{s-a}{(s-a)^2 - b^2}.$$

(B) Find the inverse Laplace transform of $\frac{s^2 - s - 2}{s(s+3)(s-2)}$.

OR

(C) If L[f(t)] = F(s), then prove that

$$L\left[\int_0^t f(u) du\right] = \frac{F(s)}{s}.$$

Hence find
$$L\left[\int_0^t \frac{\sin u}{u} du\right]$$
.

NVM—7976 (Contd.)

(D) By using convolution theorem, evaluate:

$$L^{-1}\left[\frac{s}{\left(s^2+4\right)^2}\right].$$

UNIT-III

- 3. (A) Solve y''' + 2y'' y 2y = 0, given that y(0) = y'(0) = 0.
 - (B) Solve y'' + ty' y = 0, given that y(0) = 0, y'(0) = 2.

OR

- (C) Solve $\frac{\partial u}{\partial t} = 3\frac{\partial^2 u}{\partial x^2}$, given that u(0, t) = 0, u(5, t) = 0, $u(x, 0) = \sin \pi x$.
- (D) Find the Fourier sine transform of $\frac{e^{-\lambda x}}{x}$, $\lambda > 0$.

UNIT-IV

- 4. (A) Prove that a subgroup N of a group G is a normal subgroup of G if and only if each left coset of N in G is a right coset of N in G.
 - (B) Let G be a group and N be its normal subgroup. Then prove that the set $\frac{G}{N}$ of all cosets is a group with respect to multiplication of cosets as N_a . $N_b = N_{ab}$.

OR

- (C) Let $f: G \to G'$ be a homomorphism of a group G onto a group G' and K be the Kernel of f. Then prove that $G/K \cong G'$.
- (D) Let G be the additive group of real numbers and G' = G. Show that a mapping $f : G \to G'$ defined by f(x) = 12x, $\forall x \in G$ is a homomorphism. Is it 1 1 and onto ? Also find Kernel K of homomorphism f.

QUESTION-V

- 5. (A) Show that $(xJ_1)' = xJ_0$.
 - (B) Show that $P_n(1) = 1$.
 - (C) Find L e^{-4t} (sin 5t + 3 cos 2t). 1½
 - (D) Evaluate L {t . sinh 2t}.
 - (E) Solve $\frac{dx}{dt} + x = 0$, x(0) = 2.
 - (F) Find the Fourier cosine transform of the function

$$f(x) = \begin{cases} 1 & , & 0 < x < a \\ 0 & , & x \ge a \end{cases}$$

- (G) Prove that every cyclic group is abelian.
- (H) If $G = \{1, -1, i, -i\}$ is a group under multiplication and I, the additive group of all integers. Show that the function $f: I \to G$ defined by $f(n) = i^n$, $\forall n \in I$, is a homomorphism.

NVM—7976 KNT/KW/16/5109

6