Bachelor of Science (B.Sc.) Semester-III (C.B.S.) Examination

STATISTICS

(Statistical Methods)
Paper-I
Time : Three Hours]
[Maximum Marks : 50
N.B. :- All questions are compulsory and carry equal marks.

1. (A) Define (i) joint p.d.f. (ii) marginal p.d.f. (iii) conditional p.d.f. (iv) conditional mean and (v) conditional variance of a continuous bivariate probability distribution.

The p.d.f. of a continuous bivariate distribution is

$$
f(x, y)=\left\{\begin{array}{cc}
x+y, & 0<x<1 \\
& 0<y<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find :
(i) Marginal p.d.f.s of X and Y .
(ii) Conditional p.d.f. of Y given $\mathrm{X}=\mathrm{x}$
(iii) Conditional mean of Y given $\mathrm{X}=\frac{1}{2}$
(iv) Conditional variance of Y given $\mathrm{X}=\frac{1}{2}$.

OR

(E) Define :
(i) Bivariate m.g.f.
(ii) Bivariate c.d.f.
(iii) Stochastic independence of two random variables.

If the r.v.s X and Y are independent, show that $\operatorname{cov}(\mathrm{X}, \mathrm{Y})=0$. Is the converse true ? Justify.
A fair coin is tossed three times. Let X take a value 1 or 0 according as a head or a tail occurs on the first toss, and let Y denote the no. of heads which occur. Determine :
(i) the probability distributions of X and Y
(ii) the joint probability distribution of X and Y
(iii) $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$.
2. (A) State the p.d.f. of Bivariate normal distribution of r.v. (X, Y). Find its m.g.f. and hence find means of X and Y . Let X and Y have a bivariate normal distribution with means μ_{1} and μ_{2}, positive variances σ_{1}^{2} and $\sigma_{2}{ }^{2}$ and correlation coefficient ρ. Then using m.g.f. show that X and Y are independent iff $\rho=0$.

OR

(E) State the p.m.f. of multinomial distribution. Hence write p.m.f. of trinomial distribution. Find its m.g.f. Check whether the variables following trinomial distribution are independent.

A certain city has three television channels. During prime time on Saturday nights, channel 12 has 50% of the viewing audience, channel 10 has 30% of the viewing audience and channel 3 has 20% of the viewing audience. Find the probability that among eight television viewers in the city, randomly chosen on a Saturday night, two will be watching channel 12, three will be watching channel 10 and three will be watching channel 3 .
3. (A) Let $X_{1} X_{2} \ldots \ldots . X_{n}$ be a random sample of size n from exponential distribution. Find the probability distribution of $\sum_{i=1}^{n} X_{i}$.
(B) If the joint p.d.f. of random variables X_{1} and X_{2} is

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
e^{-\left(x_{1}+x_{2}\right)} & , \quad x_{1}>0, x_{2}>0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find :
(a) the joint p.d.f. of r.v.s $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$
(b) the marginal p.d.f. of Y_{2}.

OR

(E) Let X be a geometric variable with probability distribution :

$$
\mathrm{f}(\mathrm{x})=\frac{3}{4}\left(\frac{1}{4}\right)^{\mathrm{x}-1}, \mathrm{x}=1,2,3, \ldots \ldots
$$

Find the probability distribution of $Y=X^{2}$.
(F) If X is a standard normal variable, find the p.d.f. of $\mathrm{Y}=\mathrm{X}^{1 / 3}$.
(G) If $Y=|X|$ show that $-\infty<x<+\infty, x \neq 0$

$$
g(y)=\left\{\begin{array}{ccc}
f(y)+f(-y) & , \quad y>0 \\
0 & , & \text { elsewhere }
\end{array}\right.
$$

where $f(x)$ is p.d.f. of X at x and $g(y)$ is p.d.f. of Y at y.
(H) Define :
(i) Statistic and parameter
(ii) Random sample
(iii) Sampling distribution.
4. (A) Define the chi-square statistic. State its p.d.f. Find mode of a Chi-square distribution. State and prove additive property of Chi-square distribution.
(B) Define Fisher's t. Derive its p.d.f.

OR

(E) Define F-statistic. Derive its p.d.f. Find μ_{r}^{\prime} are hence find mean and variance of F-distribution.
(F) Given that $H=\left\{1, \mathfrak{a}^{2}\right\}$ is a subgroup of group $G=\left\{a, \mathfrak{a}^{2}, a^{3}, a^{4}=1\right\}$. Then
5. Solve any TEN questions :
(A) Show that $\operatorname{cov}(\mathrm{aX}, \mathrm{bY})=\mathrm{ab} \operatorname{cov}(\mathrm{X}, \mathrm{Y})$.
(B) Find k if the joint p.d.f. of (X, Y) is

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{ccc}
\mathrm{k}(\mathrm{x}+2 \mathrm{y}) & , & 0<\mathrm{x}<1,0<\mathrm{y}<1 \\
0 & , & \text { elsewhere }
\end{array}\right.
$$

(C) State the limits of correlation coefficient $\rho_{x y}$.
(D) If r.v. (X, Y) follows Bivariate normal distribution, state the conditional p.d.f. of Y given $\mathrm{X}=\mathrm{x}$.
(E) If r.v. (X, Y) follows Bivariate normal distribution with parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ $\equiv(3,2,4,9,0.6)$ in usual notation, find the conditional mean of Y given $\mathrm{X}=3.5$.
(F) Write the p.d.f. of Bivariate normal distribution with parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ $=(0,0,1,1, \rho)$.
(G) If $X \sim N(5,1)$ then state the probability distribution of $(X-5)^{2}$.
(H) If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$, then state the probability distribution of $Y=a+b X$.
(I) Let X have a p.m.f.
$f(x)=\left\{\begin{array}{lc}\frac{1}{4}, & x=1,2,3,4 \\ 0, & \text { elsewhere }\end{array}\right.$
Find the p.m.f. of $\mathrm{Y}=2 \mathrm{X}$.
(J) If the m.g.f. of the distribution of r.v.x is $\mathrm{M}_{\mathrm{x}}(\mathrm{t})=(1-2 \mathrm{t})^{-5 / 2}$, name the probability distribution of X and its mean.
(K) If $\mathrm{X}_{1} \sim \mathrm{~B}\left(\mathrm{n}_{\mathrm{i}}, \mathrm{p}\right), \mathrm{i}=1,2 \ldots \ldots . \mathrm{n} \mathrm{X}_{1}$ are independent r.v.s. Then state the probability distribution of $\sum_{i=1}^{n} X_{i}$ with parameters.
(L) State mean of t -distribution and comment on its skewness.

