Bachelor of Science (B.Sc.) Semester—IV (C.B.S.) Examination

ELECTRONICS

(Analogue & Digital Techniques)

Compulsory Paper—1

Time : Three Hours] [Maximum Marks : 50

N.B.:— (1) **ALL** questions are compulsory and carry equal marks.

(2) Draw neat and well labelled diagrams wherever necessary.

EITHER

1. (A) State and derive Barkhausen criteria for oscillations. Explain working of phase-shift oscillator using OP-AMP. An RC oscillator with OP-AMP has three RC sections in the feedback loop with $R = 22 \text{ k}\Omega$ and C = 10 pF. Calculate the frequency of its output.

OR

(B) Explain the equivalent circuit of a Piezoelectric crystal. With a neat circuit diagram, explain the construction and working of NOT gate based crystal oscillator. State advantages of crystal oscillator. 4+4+2

EITHER

2. (A) Explain construction and working of OP-AMP based Astable multivibrator. Derive the expression for the frequency of its output. Calculate the frequency of output of an astable multivibrator having $R_1 = 35 \text{ k}\Omega$, $R_2 = 30 \text{ k}\Omega$, $R = 50 \text{ k}\Omega$ and $C = 0.01 \text{ \mu}F$.

OR

(B) What is the need of Sample and Hold Circuit in electronic instrumentation? Explain any one type of S/H circuit. Explain construction and working of an Instrumentation amplifier with three OP-AMPs.

EITHER

- 3. (A) With respect to a DAC, define the following:
 - (a) Resolution
 - (b) Accuracy.

Explain working of R - 2R type DAC. What are its advantages (any two)? 2+6+2

NVM—5435 (Contd.)

OR

- (B) Logic levels for a 4-bit R 2R ladder are 1 = 5 V and 0 = 0 V. Calculate:
 - (i) Range
 - (ii) Resolution
 - (iii) Output voltage for (a) 1010 and (b) 0100.

State any two applications of DAC.

2+2+2+2+2

EITHER

4. (A) State and explain Sampling Theorem. With a neat circuit diagram, explain the construction and working of 3-bit flash type ADC.

OR

- (B) Explain the Algorithm of a successive approximation ADC. Draw the block diagram of a successive approximation ADC and explain its working.

 5+5
- 5. Answer any **TEN**:
 - (A) State any two factors affecting the stability of output frequency of an oscillator.
 - (B) Draw the circuit symbol of an oscillator.
 - (C) Why are LC oscillators used at high frequencies only?
 - (D) State the type of feedback used in a nanostable multivibrator.
 - (E) Why do we use CMOS switches in a S/H circuit?
 - (F) State any two applications of Data Acquisition System.
 - (G) What is the need of DAC in electronic instrumentation system?
 - (H) State the principle of Dual bias DAC.
 - (I) Why is it useful to connect an OP-AMP at the output of a DAC?
 - (J) State two disadvantages of a single slope ADC.
 - (K) What is quantisation error in ADC?
 - (L) What is the role of a comparator in ADC?

 $1 \times 10 = 10$