Bachelor of Science (B.Sc.) Semester-IV Examination
 MATHEMATICS (PARTIAL DIFFERENTIAL EQUATION AND CALCULUS OF VARIATION) Optional Paper-I

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Find the integral curves of the equations :

$$
\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)} .
$$

(B) Prove a necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v)=0$, not involving x or y explicitly is that $\frac{\partial(u, v)}{\partial(x, y)}=0$.

OR

(C) Verify the equation :

$$
2 x z d x+2 y z d y-\left(x^{2}+y^{2}\right)(z-1) d z=0
$$

is integrable and if it is so, then solve it.
(D) Eliminate the arbitrary function f from the equation $\mathrm{z}=\mathrm{f}\left(\frac{\mathrm{xy}}{\mathrm{z}}+\mathrm{z}\right)$.

UNIT-II
2. (A) Find the general solution of the partial differential equation :

$$
\begin{equation*}
(y+z x) p-(x+y z) q=x^{2}-y^{2} . \tag{6}
\end{equation*}
$$

(B) Show that the equations :

$$
x p=y q, z(x p+y q)=2 x y
$$

are compatible and find their solution.

OR

(C) Find the complete integral of the partial differential equation :

$$
p^{2} q^{2}+x^{2} y^{2}=x^{2} q^{2}\left(x^{2}+y^{2}\right)
$$

by using Charpit's method.
(D) Show that a complete integral of
$f\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)=0$, is $u=a x+b y+\phi(a, b) z+c$,
where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are arbitrary constants and $\mathrm{f}(\mathrm{a}, \mathrm{b}, \phi)=0$. Further find also the complete integral of $\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial z}$.

UNIT-III

3. (A) Solve $\left(D^{3}-4 D^{2} D^{\prime}+4 D^{\prime 2}\right) z=\sin (y+2 x)$ where $D=\frac{\partial}{\partial x}, \quad D^{\prime}=\frac{\partial}{\partial y}$.
(B) Solve $\left(D^{2}-D D^{\prime}+D^{\prime}-1\right) z=\cos (x-2 y)+x^{2}$ where $D=\frac{\partial}{\partial x}, \quad D^{\prime}=\frac{\partial}{\partial y}$.

OR

(C) Solve $\left(D^{2}-D^{\prime}\right) z=2 y-x^{2}$, where $D=\frac{\partial}{\partial x}, \quad D^{\prime}=\frac{\partial}{\partial y}$.
(D) Solve $\left(x^{2} D^{2}+y^{2} D^{\prime 2}+2 x y D D^{\prime}\right) z=x^{n} y^{m}$, where $D=\frac{\partial}{\partial x}, \quad D^{\prime}=\frac{\partial}{\partial y}$, by using $x=e^{u}$ and $y=e^{v}$.

UNIT-IV

4. (A) Find the extremal of the functional $I[y(x)]=\int_{0}^{1}\left[x y^{\prime}-y^{\prime 2}\right] d x, y(\theta)=1, y(1)=\frac{1}{4}$.
(B) Find the extremal of the functional :

$$
\begin{equation*}
\mathrm{I}[\mathrm{y}(\mathrm{x}), \mathrm{z}(\mathrm{x})]=\int_{1}^{2}\left[\mathrm{z}^{\prime 2}-\mathrm{xy}^{\prime} \mathrm{z}\right] \mathrm{dx}, \mathrm{y}(1)=\mathrm{z}(1)=1, \mathrm{y}(2)=-\frac{1}{6}, \mathrm{z}(2)=\frac{1}{2} \tag{6}
\end{equation*}
$$

OR

(C) Among the plane smooth curves joining the points $A\left(x_{0}, y_{0}\right)$ and $B\left(x_{1}, y_{1}\right)$ find that one which generates the surface with the least area upon rotation around the OX-axis.
(D) Find Euler-Ostrogradsky's equation for the functional :

$$
\begin{equation*}
\mathrm{I}[\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})]=\iiint_{\mathrm{D}}\left[\left(\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)^{2}+\left(\frac{\partial \mathrm{u}}{\partial \mathrm{z}}\right)^{2}+2 \mathrm{uf}\right] \mathrm{dxdydz} \tag{6}
\end{equation*}
$$

Question-V

5. (A) Solve the equation $z y d x+z x d y+2 x y d z=0$.
(B) Form a partial differential equation by eliminating arbitrary constants a and b from the equation $a x^{2}+b y^{2}-z^{2}=1$.
(C) Solve $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$.
(D) Show that the equations $p=P(x, y)$ and $q=Q(x, y)$ are compatible if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
(E) Solve xys $=1$, where $s=\frac{\partial^{2} z}{\partial x \partial y}$.
(F) Find particular integral of $\left(D^{2}-4 D^{\prime}+4 D^{2}\right) z=e^{2 x+y}$.
(G) Let $[y(x)]=\int_{0}^{1}[y(x)]^{2} d x$, be a functional. If $y(x)=\sqrt{1+x^{2}}$ then find $\mathrm{I}[y(x)]$.
(H) If F is linearly dependent on y^{\prime} defined by $F=P(x, y)+y^{\prime} Q(x, y)$, then from Euler's equation, show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$.
