TKN/KS/16/5853
Bachelor of Science (B.Sc.) Semester-IV (C.B.S.)
Examination MATHEMATICS

Paper-I
(M_{7} —Partial Differential Equation and Calculus of Variation)

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Questions 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) Find the integral curves of the equations :
$\frac{d x}{y(x+y)-b z}=\frac{d y}{x(x+y)+b z}=\frac{d z}{z(x+y)}$.
(B) Verify the equation :
$x\left(y^{2}-a^{2}\right) d x+y\left(x^{2}-z^{2}\right) d y-z\left(y^{2}-a^{2}\right) d z=0$
is integrable and solve it.
OR
(C) Verify that the equation :
$\left(y^{2}+y z\right) d x+\left(z^{2}+x z\right) d y+\left(y^{2}-x y\right) d z=0$
is integrable and find its solution.
(B) Find P.I. of
$\left(D^{2}-6 D D^{\prime}+9 D^{\prime 2}\right) z=12 x^{2}+36 x y$
where $D=\frac{\partial}{\partial x}, D^{\prime}=\frac{\partial}{\partial y}$.

OR

(C) Solve :
$\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial y}-z=\cos (x+2 y)$.
(D) Solve :

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2} \frac{\partial^{2} z}{\partial y^{2}}=x^{2} y, \text { by using } x=e^{u} \text { and }
$$

$y=e^{v}$.
6

UNIT-IV

4. (A) Prove a necessary condition for the functional $I[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x$ to be an extremum is that

$$
\begin{equation*}
\frac{\partial \mathrm{F}}{\partial \mathrm{y}}-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\partial \mathrm{~F}}{\partial \mathrm{y}^{\prime}}\right)=0 \tag{6}
\end{equation*}
$$

(B) Find the shortest curve joining the two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ by using the functional

$$
\mathrm{I}[\mathrm{y}(\mathrm{x})]=\int_{x_{1}}^{x_{2}} \sqrt{\left[1+\left(\mathrm{y}^{\prime}\right)^{2}\right]} d x
$$

with $\mathrm{y}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1}$ and $\mathrm{y}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2}$.

OR

(C) Find the extremum for the functional
$I[y(x)]=\int_{0}^{\pi}\left(16 y^{2}-y^{\prime \prime 2}+x^{2}\right) d x ;$
$\mathrm{y}(0)=\mathrm{y}(\pi)=0, \mathrm{y}^{\prime}(0)=\mathrm{y}^{\prime}(\pi)=1$.
(D) Write Euler's-Ostrogradsky equation for the functional $I[z(x, y)]=\iint_{D}\left[\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right] d x d y$.

UNIT-V

5. (A) Find the integral curves of $\frac{d x}{1}=\frac{d y}{-2}=\frac{d z}{3 x^{2} \sin (2 x+y)}$.
(B) Form a partial differential equation by eliminating arbitrary constants from the equation

$$
\mathrm{z}=(\mathrm{x}+\mathrm{a})(\mathrm{y}+\mathrm{b})
$$

(C) Find the complete integral of $\mathrm{pq}=1$, by Charpit's method.
(D) Write the Jacobi's auxiliary equation for $\mathrm{p}^{2} \mathrm{x}+\mathrm{q}^{2} \mathrm{y}=\mathrm{z}$.

MXP-M—3520 4
(D) Prove a necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $\mathrm{F}(\mathrm{u}, \mathrm{v})=0$, not involving x or y explicitly is
that $\frac{\partial(u, v)}{\partial(x, y)}=0$.

UNIT-II

2. (A) Find the general solution of the partial differential equation :

$$
\begin{equation*}
z(x p-y q)=y^{2}-x^{2} \tag{6}
\end{equation*}
$$

(B) Find the integral surface of the partial differential equation $x^{2} p+y^{2} q+z^{z}=0$ through the curve $\mathrm{xy}=\mathrm{x}+\mathrm{y}, \quad \mathrm{z}=1$.

OR

(C) Using Charpit's method, find the complete integral of the partial differential equation :

$$
\begin{equation*}
\mathrm{p}=(\mathrm{z}+\mathrm{qy})^{2} \tag{6}
\end{equation*}
$$

(D) Show that a complete integral of $\mathrm{f}\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)=0$ is $u=a x+b y+\phi(a, b) z+c$, where a, b, c are arbitrary constants and $f(a, b, \phi)=0$. Further find also the complete integral of

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial u}{\partial z} . \tag{6}
\end{equation*}
$$

UNIT-III

3. (A) Solve :
$\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \sin x$
where $D=\frac{\partial}{\partial x}, D^{\prime}=\frac{\partial}{\partial y}$.
(E) Solve $\frac{\partial^{2} z}{\partial x \partial y}=2 x+2 y$ by integrating with respect to x and y . $11 / 2$
(F) Find P.I. of $\left(D^{2}-4 D D^{\prime}+4 D^{\prime 2}\right) z=e^{2 x+y} . \quad 11 / 2$
(G) Let $I[y(x)]=\int_{0}^{1}[y(x)]^{2}$.dx be a functional.

If $\mathrm{y}(\mathrm{x})=\sqrt{1+\mathrm{x}^{2}}$ then find I $[\mathrm{y}(\mathrm{x})]$.
(H) Find the distance of order zero between the functions $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=\mathrm{x}$ on the interval $[0,1]$.

