NKT/KS/17/5139

Bachelor of Science (B.Sc.) Semester-IV (C.B.S.) Examination
 MATHEMATICS ($\mathrm{M}_{\mathbf{8}}$-Mechanics)
 Paper-II

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) If six forces of relative magnitudes $1,2,3,4,5$ and 6 act along the sides of a regular hexagon taken in order, show that the single equivalent force is of relative magnitude 6 and that it acts along a line parallel to the force 5 at a distance from the centre of the hexagon $31 / 2$ times the distance of a side from the centre.
(B) Five weightless rods of equal length are joined together so as to form a rhombus ABCD with one diagonal BD. If a weight W be attached to C and the system be suspended from A , show that there is a thrust BD equal to $\mathrm{W} / \sqrt{3}$.
(C) Derive the Cartesian equation of a common catenary in the form

$$
\begin{equation*}
\mathrm{y}=\mathrm{c} \cosh (\mathrm{x} / \mathrm{c}) . \tag{6}
\end{equation*}
$$

(D) A uniform chain of length ℓ is to be suspended from two points A and B in the same horizontal line so that the tension at the high point is twice that at the lowest point. Show that the span is :

$$
\begin{equation*}
\frac{\ell}{\sqrt{3}} \log (2+\sqrt{3}) \tag{6}
\end{equation*}
$$

UNIT-II

2. (A) The velocity of a particle along and perpendicular to a radius vector from a fixed origin are λr^{2} and $\mu \theta^{2}$. Show that the equation to the path is $\frac{\lambda}{\theta}=\frac{\mu}{2 r}+\mathrm{c}$ and the components of acceleration are $2 \lambda^{2} r^{3}-\mu^{2} \frac{\theta^{4}}{r}$ and $\lambda \mu r \theta^{2}+2 \mu^{2} \frac{\theta^{3}}{r}$.
(B) An insect crawls at a constant rate u along the spoke of a cart wheel of radius a, the cart is moving with velocity v. Find the acceleration along and perpendicular to the spoke.
(C) At the ends of three successive seconds the distances of a point moving with simple harmonic motion from its mean position measured in the same direction are 1,5 and 5 . Show that the period of a complete oscillation is $2 \pi / \cos ^{-1}(3 / 5)$.
(D) Show that the particle executes S.H.M. requires $1 / 6^{\text {th }}$ of its period to move from the position of maximum displacement to one in which the displacement is half the amplitude.

UNIT-III

3. (A) Derive Lagrange's equations of motion for conservative holonomic system as

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{q}}_{\mathrm{j}}}\right)-\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{j}}}=0, \mathrm{j}=1,2, \ldots, \mathrm{n} .
$$

where the quantity $\mathrm{L}=\mathrm{T}-\mathrm{V}$ is Lagrangian of the system.
(B) Two particles of masses m_{1} and m_{2} are connected by a light inextensible string which passes over a small smooth fixed pulley. If $m_{1}>m_{2}$, then show that the common acceleration of the particle

$$
\begin{equation*}
\text { is }\left(\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{g} \tag{6}
\end{equation*}
$$

OR

(C) Derive Lagrange's equations of motion in the form :

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{q}}_{\mathrm{j}}}\right)-\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{j}}}=\mathrm{Q}_{\mathrm{j}}^{\prime}, \quad \mathrm{j}=1,2, \ldots, \mathrm{n}
$$

for a partly conservative system, where the quantity L refers to the conservative part of the system and $\mathrm{Q}_{\mathrm{j}}^{\prime}$ refers to the forces which are not conservative.
(D) Prove that Lagrange's equations of motion takes the form :

$$
\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)^{\cdot}-\frac{\partial L}{\partial q_{j}}+\frac{\partial R}{\partial \dot{q}_{j}}=0, j=1,2, \ldots, n,
$$

when the frictional forces acting on the system are such that they are derivable in terms of Rayleigh's dissipation function R .

UNIT-IV

4. (A) Prove that the problem of motion of two masses interacting with only one another can always be reduced to a problem of the motion of a single mass.
(B) For a system moving in a finite region of space with finite velocity, prove that the time average of kinetic energy is equal to the virial of the system.

OR

2

NKT/KS/17/5139
(C) In a central force field, prove that :
(i) The path of a particle lies in one plane and
(ii) The areal velocity is conserved.
(D) Show that if a particle describes a circular orbit under the influence of an attractive central force directed towards point on the circle, then the force varies as the inverse fifth power of the distance.

QUESTION—V

5. (A) If two forces P and Q are acting at two different points of a rigid body. Then define : like parallel forces, unlike parallel forces and also state when do they form a couple. $11 / 2$
(B) For a common catenary, prove that $\mathrm{y}=\mathrm{c} \sec \psi$. $111 / 2$
(C) Prove the relation : $\frac{\mathrm{d} \hat{\mathrm{n}}}{\mathrm{dt}}=-\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right) \hat{\mathrm{r}}$, where $\hat{\mathrm{r}}$ and $\hat{\mathrm{n}}$ are unit vectors along and perpendicular to the radial direction respectively in XY-plane and θ is the angle made by radius vector with an axis OX.
(D) A point describes a cycloid $\mathrm{s}=4 \mathrm{a} \sin \psi$ with uniform speed v. Show that its tangential accleration is zero.
(E) Define : Holonomic and Non-Holonomic constraint. $11 / 2$
(F) State D'Alembert's principle for a mechanical system of n particles. $11 / 2$
(G) If the total torque on a particle is zero, then show that the angular momentum is conserved.
(H) For an inverse square law, show that virial theorem takes a form $\overline{\mathrm{T}}=-\frac{1}{2} \mathrm{~V}$.
