Bachelor of Science (B.Sc.) Semester-IV (C.B.S.) Examination
 PHYSICS
 Paper-I
 (Solid State Physics, X-Ray and Laser)

Time : Three Hours]
[Maximum Marks : 50
N.B. :- (1) ALL questions are compulsory.
(2) Draw neat diagrams wherever necessary.

EITHER

1. (A) What are the symmetry operations in crystals ? Explain non-existence of five fold symmetry. 5
(B) (i) What are Miller indices ? Explain the procedure to find Miller indices of a crystal plane. 3
(ii) Draw (1 000), ($\left.\begin{array}{lll}1 & 1 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ and ($\left.\begin{array}{lll}2 & 2 & 2\end{array}\right)$ planes. 2

OR

(C) Show that the interplanar distance for a simple cubic structure is given by $\mathrm{d}_{\mathrm{hk} \ell}=\frac{\mathrm{a}}{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\ell^{2}}}$ where the letters have their usual meaning. $\quad 2^{1 / 2}$
(D) What is packing fraction? Obtain its value for body centred cubic structure. $2 \frac{11212}{2}$
(E) Explain the crystal structure of NaCl . $2 \frac{1}{2}$ 2
(F) Rhodium, having bcc structure, has atomic radius of 0.1345 nm . Determine the lattice constant. $2^{1 ⁄ 2} 2$

EITHER

2. (A) Explain the construction and working of Bragg's spectrometer. Explain its use for the determination of wavelength of X-rays.
(B) (i) Obtain Bragg's condition for X-ray diffraction. 3
(ii) X-rays of wavelength $0.5 \AA$ are diffracted at an angle of 5° in first order. Calculate the interplanar spacing of the crystal.

OR
(C) Explain the construction of reciprocal lattice. $21 / 2$
(D) Obtain the Bragg's diffraction condition for reciprocal lattice. $21 / 2$
(E) Define reciprocal lattice vectors and obtain the relation between translation vector in direct and reciprocal lattice. $2 \frac{1}{2}$
(F) The primitive vector of direct lattice are given by: $\vec{a}=2 \vec{i}, \vec{b}=\vec{i}+2 \vec{j}$ and $\vec{c}=\vec{k}$. Find the primitive vectors in reciprocal lattice.

EITHER

3. (A) Explain the construction and working of a Coolidge tube with a well-labelled diagram.
(B) (i) Explain characteristic X-ray spectra and draw the energy level diagram.
(ii) Calculate the wavelength of K_{α} line emitted from Copper

$$
\begin{equation*}
\text { (Given : } \mathrm{R}=1.1 \times 10^{7} \mathrm{~m}^{-1}, \mathrm{Z}=29 \text {) } \tag{2}
\end{equation*}
$$

OR
(C) What are X-rays? State their properties. $2 \frac{1 ⁄ 2}{2}$
(D) Explain Moseley's law for X-rays. State its significance. $2 \frac{1122}{2}$
(E) Show that absorption of X-rays by a material follows exponential law. 21⁄2
(F) Calculate the maximum frequency of X-rays when a p.d. of 25 kV is applied. $2 \frac{1}{2}$

EITHER

4. (A) Explain the principle, construction and working of $\mathrm{He}-\mathrm{Ne}$ laser. State the drawbacks of $\mathrm{He}-\mathrm{Ne}$ laser.
(B) (i) Obtain the relation between Einstein's coefficient A and B. 3
(ii) Coherence length of Sodium D_{2}-Line is 2.5 cm and wavelength is $5890 \AA$. Calculate the coherence time and spectral width of Line.

OR

(C) Explain the lasing action in three level Laser System.$2^{1 / 2}$
(D) Name the different pumping schemes in Laser and explain any two of them. $2 \frac{112}{2}$
(E) What are the applications of Laser ? $2 \frac{1}{2}$
(F) Calculate the energy of a photon of Laser beam of wavelength $6328 \AA$. $21 / 2$
5. Attempt any TEN questions :-
(i) State two differences between amorphous and crystalline solids.
(ii) What is the number of atoms per unit cell of BCC and FCC crystal?
(iii) Find the Miller indices of a plane whose intercepts are $2 \mathrm{a}, 3 \mathrm{~b}$ and 4 c on crystallographic axes.
(iv) What is Bremsstrahlung in X-rays ?
(v) What is Duane-Hunt Law ?
(vi) What is Auger effect?
(vii) Write the Laue's equation for the diffraction of X-rays.
(viii) Write any two properties of reciprocal lattice.
(ix) What are the different standard methods for X-ray diffraction?
(x) What is Population Inversion?
(xi) State the salient features of a Laser beam.
(xii) What is the coherence length of a Laser beam having coherence time of $3.33 \times 10^{-15} \mathrm{sec}$? $\quad 1 \times 10=10$

