NKT/KS/17/5140

Bachelor of Science (B.Sc.) Semester—IV (C.B.S.) Examination **PHYSICS** Paper—I

(Solid State Physics, X-Ray and Laser)

		(1) (2)	Hours] [Maximum Mark ALL questions are compulsory. Draw neat diagrams wherever necessary.	rs: 50			
	EIT	HER					
1.	(A)	What are the symmetry operations in crystals? Explain non-existence of five fold symmetry.					
	(B)	(i)	What are Miller indices ? Explain the procedure to find Miller indices of a crystal plane.	3			
		(ii)	Draw (1 0 0), (1 1 0), (1 1 1) and (2 2 2) planes.	2			
	OR						
	(C)	Shov	w that the interplanar distance for a simple cubic structure is given by $d_{hk\ell} = \frac{a}{\sqrt{h^2 + k^2 + \ell^2}}$	where			
			etters have their usual meaning.	21/2			
	(D)	What is packing fraction? Obtain its value for body centred cubic structure.					
	(E)	Explain the crystal structure of NaCl. 2½					
	(F)	Rhodium, having bcc structure, has atomic radius of 0.1345 nm. Determine the lattice constant. 21/2					
	EIT	HER					
2.	(A)	A) Explain the construction and working of Bragg's spectrometer. Explain its use for the determination					
		wave	elength of X-rays.	5			
	(B)	(i)	Obtain Bragg's condition for X-ray diffraction.	3			
		(ii)	X-rays of wavelength $0.5\mbox{\normalfont\AA}$ are diffracted at an angle of 5° in first order. Calculate the interspacing of the crystal.	rplanar 2			
	OR						
	(C)	Expl	ain the construction of reciprocal lattice.	2½			
	(D)	Obta	in the Bragg's diffraction condition for reciprocal lattice.	21/2			
	(E)	Define reciprocal lattice vectors and obtain the relation between translation vector in direct reciprocal lattice.		et and 2½			
	(F)		primitive vector of direct lattice are given by : $\vec{a} = 2\vec{i}$, $\vec{b} = \vec{i} + 2\vec{j}$ and $\vec{c} = \vec{k}$. Find the proof in reciprocal lattice.	imitive 2½			
NXO—20489			1 (6	Contd.)			

T T T T		
H' 1	ш	H. IV

NXO-20489

3.	(A)	Explain the construction and working of a Coolidge tube with a well-labelled diagram.	5			
	(B)	(i) Explain characteristic X-ray spectra and draw the energy level diagram.	3			
		(ii) Calculate the wavelength of K_{α} line emitted from Copper				
		(Given: $R = 1.1 \times 10^7 \text{m}^{-1}, Z = 29$)	2			
	OR	83				
	(C)	What are X-rays ? State their properties.	21/2			
	(D)	Explain Moseley's law for X-rays. State its significance.				
	(E)	Show that absorption of X-rays by a material follows exponential law.				
	(F)	Calculate the maximum frequency of X-rays when a p.d. of 25 kV is applied.				
	EIT	HER				
4.	(A)	Explain the principle, construction and working of He-Ne laser. State the drawbacks of He-Ne laser.				
			5			
	(B)	(i) Obtain the relation between Einstein's coefficient A and B.	3			
		(ii) Coherence length of Sodium D ₂ -Line is 2.5 cm and wavelength is 5890 Å. Calo				
		coherence time and spectral width of Line.	2			
	OR	$_{\circ}Q^{V}$				
	(C)					
	(D)					
	(E)	What are the applications of Laser?	21/2			
_	(F)	Calculate the energy of a photon of Laser beam of wavelength 6328 Å.	2½			
5.		empt any TEN questions :—				
	(i)	State two differences between amorphous and crystalline solids.				
	(ii)	What is the number of atoms per unit cell of BCC and FCC crystal?				
	(iii)	Find the Miller indices of a plane whose intercepts are 2a, 3b and 4c on crystallographic axes.				
	(iv)	What is Bremsstrahlung in X-rays?				
	(v)	What is Duane-Hunt Law?				
	(vi)	What is Auger effect?				
	(vii)	Write the Laue's equation for the diffraction of X-rays.				
		Write any two properties of reciprocal lattice.				
	(ix)	What are the different standard methods for X-ray diffraction?				
	(x)	What is Population Inversion?				
	(xi)	State the salient features of a Laser beam.				
	(xii)	What is the coherence length of a Laser beam having coherence time of $3.33 \times 10^{-15}\mathrm{sec}$?	$1 \times 10 = 10$			

2

www.rtmnuonline.com

NKT/KS/17/5140