NRT/KS/19/2140

Bachelor of Science (B.Sc.) Semester—V Examination

CH-502 PHYSICAL CHEMISTRY

		Compulsory Paper—2 (Chemistry)	
Tin	ne : Tl	hree Hours] [Maximum Mar	ks : 50
	Not	e:—(1) All questions are compulsory.	
		(2) Write chemical equations and draw diagrams wherever necessary.	
1.	(A)	Explain how classical mechanics fails when applied to :—	
		(i) Black body radiation and	
		(ii) Heat capacity of solids.	5
	(B)	State postulates of quantum mechanics. Derive Schrodinger wave equation from postul quantum mechanics.	ates of
		OR	
	(C)	Explain de-Broglie's hypothesis related to dual nature of matter. Derive the de-broglien.	oglie's 2½
	(D)	A microscope using suitable photons is employed to locate an electron in an atom we distance of 0.1 Å. What is the uncertainty involved in the measurement of its velocity?	
		$(m_e^{}=9.1\times 10^{-31}kg \text{ and } h=6.626\times 10^{-34}Js).$	21/2
	(E)	What are normalized and orthogonal wave functions?	21/2
	(F)	An electron is confined to an infinite one dimensional box of width 4Å. Calculate its energy in the fourth energy level (1 eV = 1.60×10^{-19} J).	ergy in 2½
2.	(A)	What are probability distribution curves? Draw and discuss radial probability distribution for 3s and 3p orbitals.	curves 5
	(B)	What are the conditions for formation of molecular orbitals from atomic orbitals? Discrephysical picture of bonding and antibonding wave functions.	uss the 5
		OR	
	(C)	What are quantum numbers? Discuss the significance of principle quantum number.	21/2
	(D)	Write Schrodinger wave equation for hydrogen like particles in terms of polar co-ordin	ates. 2½
	(E)	Discuss graphically the variation of electron probability density for bonding molecular of along the internuclear axis.	orbitals 2½
	(F)	Explain molecular orbital theory for H ₂ molecule.	21/2
3.	(A)	Derive the relationship between depression in freezing point of the solvent and molar manner non-volafile solute.	nss of a 5
	(B)	How do the magnetic susceptibility measurement can be used :	
		(i) In the study of co-ordination compounds and	
		(ii) In calculation of the number of unpaired electrons in a molecule.	5
		OP	

- (C) Define osmotic pressure. How can it be determined by Berkeley-Hartley method? 2½
- (D) A 0.3015 g of silver nitrate when dissolved in 28.40 g of water depressed the freezing point by 0.212 °C. To what extent is silver nitrate dissociated?

 $(K_f \text{ for water} = 1.85 \, {}^{\circ}\text{C mol}^{-1})$

- (E) Define molarity of solution. A 0.212 g of Na_2CO_3 with molecular mass 106 is dissolved in 250 ml of solution. Caculate the molarity of Na_2CO_3 in the solution. $2\frac{1}{2}$
- (F) Explain the terms magnetic permeability and magnetic susceptibility. How are they used to decide diamagnetic and paramagnetic substances?
- 4. (A) What do you mean by singlet and triplet states? Explain fluorescence and phosphorescence phenomenon using Jablonski diagram. 5
 - (B) Explain Rayleighs' line, Stokes' lines and anti-Stokes' lines in Raman spectra? Give experimental setup of Raman spectroscopy.

OR

- (C) Calculate the transmittance, absorbance and absorption coefficient of a solution which absorbs 90% of a certain wavelength of light beam passed through a 1 cm cell containing 0.25 M solution.
- (D) Define quantum yield of photochemical reactions. How can it be experimentally determined?
- (E) Write a short note on energy transfer processes.

 $2\frac{1}{2}$

- (F) Represent diagramatically the separation between the different lines obtained for pure rotational Raman spectrum of diatomic molecules.
- 5. Attempt any **TEN** questions of the following:—
 - (i) What is Photoelectric effect?
 - (ii) Give the physical significance of Ψ^2 .
 - (iii) When is an operator said to be linear?
 - (iv) What is the concept of atomic orbitals?
 - (v) Write the expression for the energy for hydrogen like particles.
 - (vi) Draw potential energy curve of H₂⁺ ion.
 - (vii) State Raoult's law.
 - (viii) Define molal elevation constant.
 - (ix) Calculate the magnetic moment of a molecule having two unpaired electrons.
 - (x) State Grotthus–Drawper law.
 - (xi) What are the limitations of Beer's law?
 - (xii) What is the selection rule for pure rotational Raman spectra? $1\times10=10$

CLS—13398 2 NRT/KS/19/2140