(D) Evaluate

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{1 + a\cos\alpha}, a^2 < 1.$$

UNIT-V

- 5. (A) Prove that a finite point set has no limit point. 11/2
 - (B) If X is a metric space and $E \subset X$, then prove that $\overline{E} = \text{closure of } E = E \cup E' \text{ is closed where } E' \equiv \text{the set of all limit points of E in X.}$
 - (C) Prove that if F is closed and K is compact, then $F \cap K$ is compact. 1½
 - (D) If $\{K_n\}$ is a sequence of non-empty compact sets such that $K_n \supset K_{n+1}$ $(n=1, 2, 3, \dots)$, then prove that $\bigcap_{n=1}^{\infty} K_n$ is not empty.
 - (E) Let R be a ring. Prove that if a, b \in R, then $(a + b)^2 = a^2 + ab + ba + b^2$. 1½
 - (F) If R is a ring and $a \in R$, let $r(a) = \{x \in R/ax = 0\}$. Prove that r(a) is a right-ideal of R. 1½

1+i

- (G) Evaluate $\int_0^z z dz$ along the line z = 0 to z = 1 + i.
- (H) If $f(z) = \frac{1}{(z-5)^3 (z-4)^2}$ then find the poles with order. 1½ MVM—47579 4 5050

NTK/KW/15/5884

Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination

MATHEMATICS

$(M_{10}\text{-Metric Space, Complex Integration and Algebra})$ Paper—II

Time—Three Hours]

[Maximum Marks—60

N.B. :— (1) Solve all the **FIVE** questions.

- (2) All questions carry equal marks.
- (3) Solve each question in full or its alternative in full.

UNIT—I

- (A) Prove that every infinite subset of a countable set A is countable.
 - (B) Let X be an infinite set. For $p \in X$ and $q \in x$, defrine

$$d(p,q) = \begin{cases} 1 & \text{(if } p \neq q) \\ 0 & \text{(in } p = q) \end{cases}.$$

Prove that this d is a metric.

6

OR

MVM—47579 1 Contd.

(C) Let $\{E_{\alpha}\}$ be a (finite or infinite) collection of sets E_{α} . Then prove that

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}^{c}\right)$$

- (D) For any collection $\{G_{\alpha}\}$ of open sets, prove that $\bigcup_{\alpha} G_{\alpha} \text{ is open. Hence, for any collection } \{F_{\alpha}\} \text{ of closed sets, prove that } \bigcap_{\alpha} F_{\alpha} \text{ is closed.} \qquad 6$
- 2. (A) Prove that closed subsets of compact sets are compact.
 - (B) If $\{I_n\}$ is a sequence of intervals in R^l , such that $I_n \supset I_{nH} \ (n=1,\,2,\,3,...), \ \text{then prove that} \ \bigcap_1^n \ I_n \ \text{is}$ not empty.

OR

- (C) Let Y be a subspace of a complete metric space X.then prove that Y is complete if and only if Y is closed.
- (D) Let a subset E of the real line R^1 be connected and $x, y \in E$ such that x < z < y, then prove that $z \in E$.

UNIT—III

3. (A) Prove that a finite integral domain is a field. 6

MVM—47579 2 Contd.

- (B) If φ is a homomorphism of a ring R into a ring R' with kernel I (φ), then prove that
 - (a) I (b) is a subgroup of R under addition and
 - (b) if $a \in I(\phi)$ and $r \in R$ then both ar and ra are in $I(\phi)$.

OR

- (C) Prove that the homomorphism ϕ of R into R' is an isomorphism if and only if I (ϕ) = kernel of ϕ = {0}.
- (D) If \cup is an ideal of R, let $r(\cup) = \{ x \in R / xu = 0 \text{ for all } u \in \cup \}$ Prove that $r(\cup)$ is an ideal of R 6

UNIT—IV

- 4. (A) If f(z) is analytic within and on a closed contour \subset , and if a is any point within \subset , then prove that $f(a) = \frac{1}{2\pi i} \int_{c} \frac{f(z) dz}{(z-a)}.$
 - (B) Find the value of the integral $\int_0^{1+i} (x y + ix^2) dz$ along the straight line from z = 0 to z = 1 + i. 6

OR

(C) Evaluate the residues of $\frac{z^2}{(z-1)(z-2)(z-3)}$ at 1, 2, 3, and infinity and show that their sum is zero.

MVM—47579 3 Contd.

NTK/KW/15/5884

NTK/KW/15/5884

Bachelor of Science (B.Sc.) Semester—V (C.B.S.)

Examination

MATHEMATICS

 $(M_{10}\text{-Metric Space, Complex Integration and Algebra})$ Paper—II

Note: Please check, as MSS was unclear.

Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination MATHEMATICS (M_{10} -Metric Space, Complex Integration and Algebra)

Paper—II

Note: Please check, as MSS was unclear.

NTK/KW/15/5884

NTK/KW/15/5884

Bachelor of Science (B.Sc.) Semester—V (C.B.S.)

Examination

MATHEMATICS

(M₁₀-Metric Space, Complex Integration and Algebra)

Paper—II

Note: Please check, as MSS was unclear.

Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination MATHEMATICS $(M_{10}\text{-Metric Space, Complex Integration and Algebra)}$ Paper—II

Note: Please check, as MSS was unclear.