## Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination METRIC SPACE, COMPLEX INTEGRATION AND ALGEBRA

|    |                |                   | e.                             |                | Par                                   | per—2              | TON AND AL       | <b>JGEBRA</b>       |              |
|----|----------------|-------------------|--------------------------------|----------------|---------------------------------------|--------------------|------------------|---------------------|--------------|
|    |                | `.<br>401         | 77                             |                |                                       | hematics)          |                  |                     |              |
|    |                |                   | Hours]                         | _              |                                       | -oniuties)         |                  | Different No. 1     | 4-           |
| IN | ote :-         | (2)               | All question                   | ive question   | is.                                   |                    |                  | [Maximum Mark       | s : 60       |
|    |                | (3)               | Duestions                      | ons carry eq   | ual marks,                            |                    |                  |                     |              |
|    |                | 25                | full.                          | 1 to 4 have    | an alterna                            | tive. Solve ea     | ch question in   | full or its alterna | tive in      |
| 1. | (A)            | Defi              | ino uma-                       |                | UN                                    | I—TI               |                  |                     |              |
| •• | (11)           | 0 ar              | nd 1 them                      | able set. If   | A is the s                            | set of all seq     | uences whose     | elements are the    | digits       |
|    |                |                   |                                |                | · · · · · · · · · · · · · · · · · · · | 12111167           |                  |                     | _            |
|    | (1)            |                   |                                |                | nd d be a r                           | eal function o     | of ordered pairs | of elements of X    | which        |
|    |                |                   | d(x, y) = 0                    |                |                                       |                    |                  |                     |              |
|    |                | (11)              | $d(x, y) \leq c$               | d(x, z) + d(z) | z, y).                                |                    |                  |                     |              |
|    |                | The               | n prove that                   | d is a met     | ric on X.                             |                    |                  |                     | 6            |
|    |                | Λ                 |                                |                |                                       | OR                 | 9                |                     |              |
|    | -              | LIUS              | cu.                            |                |                                       |                    |                  | only if its complet | 6            |
|    | :: (D)         | Let               | X be a me                      | tric:\space a  | nd EX. If                             | Eldenotes th       | ne closure of E  | then prove that     | l :          |
|    | 1              | (i)               | E is closed                    | l              | <u> </u>                              |                    | ,                |                     |              |
|    |                | (ii)              | $E = \overline{E} \text{ iff}$ | E is closed.   |                                       | <b>y</b>           |                  |                     | 6            |
|    |                |                   |                                |                | UN                                    | II—II              |                  |                     |              |
| 2. | (A)            | Prov              | e that in a                    | metric space   | e, closed s                           | ubsets of cor      | npact sets are   | compact.            | 6            |
|    | (B)            | If E              | is an infin                    | ite subset of  | a compact                             | set K, then        | prove that E I   | nas a limit point   | in K.        |
|    |                |                   |                                | A .            | <b>Y</b>                              |                    |                  | _                   | 6            |
|    |                |                   |                                |                |                                       | OR                 |                  |                     |              |
|    | (C)            |                   | Y be a subsist closed.         | space of a c   | complete me                           | etric space X      | . Prove that Y   | is complete if an   | nd only<br>6 |
|    | (D)            |                   |                                | set. If E i    | s a connec                            | ted set, then      | find whether o   | closure of E and    | interior     |
|    | (-)            |                   | are always                     |                |                                       | ,                  |                  |                     | 6            |
|    |                |                   |                                |                | UNI                                   | III—TI             |                  |                     |              |
| 3. | (A)-           | Show              | that the co                    | mmutative ri   | ing D is an                           | integral dom       | ain if and only  | if for a, b, c ∈    | D with       |
| ٠. | 7              |                   |                                | n ab = ac i    |                                       | _                  | •                |                     | 6            |
|    | (BY            | If U              | V are ideal                    | s of ring R    | and U + V                             | $r' = \{u + v/u\}$ | $\in U, v \in V$ | , then prove that   | U + V        |
|    | رسر            |                   | o an ideal.                    | 5 51 55        |                                       | •                  |                  |                     | 6            |
|    |                |                   | • •                            |                | •                                     | OR                 | _                |                     |              |
|    | (C)            | 16 1 1 <i>6</i>   | is an ideal o                  | of the ring R  | then prov                             | e that the quo     | otient ring R/U  | is a homomorphic    | : image      |
|    |                | of R              | Also provi                     | that kerne     | l of homor                            | norphism is a      | an ideal U.      |                     | •            |
|    | (D)            | T <sub>ot</sub> D | and D' ha                      | ings and of 1  | be a homom                            | norphism of R      | into R'. Prove   | that ∮ is an isomo  | orphism      |
|    | $(\mathbf{D})$ | Let K             | and K be                       | mgs and J      | oo a nomon                            | P                  |                  | -                   | ,            |

(Contd.)

6

if and only if I(p) = (0).

## www.rtmnuonline.com

## UNIT-IV

| 4. (A) Find the value of the integral $\int_{2}^{2+1} (2x+iy+2)dz$ along the straight line joining the                                                                           | points |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (1-i) and (2+i).                                                                                                                                                                 | 6      |
| (B) Verify Cauchy's integral theorem for the function $f(z) = e^z$ along the boundary triangle with vertices at the points $1 + i$ , $-1 + i$ and $-1 - i$ .                     | of the |
| OR                                                                                                                                                                               |        |
| (C) State and prove Cauchy's Residue theorem for analytic function.                                                                                                              | 6      |
| (D) If a function f(z) is analytic except at finite number of singularities (including tinfinity), then prove that the sum of residues of these signularities is zero. Hence sho |        |
| the residue of $\frac{z^3}{(z-1)(z-2)(z-3)}$ at $z=\infty$ is -6.                                                                                                                | 6      |
| QUESTION—V                                                                                                                                                                       | . '    |
| . (A) Show that a finite point subset of a metric space has no limit points.                                                                                                     | 11/2   |
| (B) If A and B are subsets of a metric space X, then prove that $A \subset B \Rightarrow A' \subset B'$ .                                                                        | 11/2   |
| era (€) If F is closed and K is compact, then prove that F ∩ K is compact.                                                                                                       | 11/2   |
| (D) Define separated set and connected set                                                                                                                                       | 11/2   |
| (E) If R is a ring and a h = R then show that $(a + b)^2 = a^2 + ab + ba + b^2$                                                                                                  | 11/    |

(G) Prove that 
$$\int_C \frac{dz}{z-a} = 2\pi i$$
, if C is a circle  $|z-a| = r$ .

(H) Find the poles of  $f(z) = \frac{z+1}{z^2(z-3)}$ . Also state which is a simple pole.

11/2

(F) If U is an ideal of ring R with unity 1 and  $1 \in U$ , then prove that U = R.

(H) Find the poles of 
$$f(z) = \frac{z+1}{2(z-z)}$$
. Also state which is a simple pole. 1½