NRT/KS/19/2136

[Maximum Marks: 60

Bachelor of Science (B.Sc.) Semester—V Examination METRIC SPACE, COMPLEX INTEGRATION AND ALGEBRA

Optional Paper—2

(Mathematics)

Time: Three Hours]

N.B. :— (1) Solve **ALL** the five questions. (2) All questions carry equal marks. (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full. UNIT—I (A) Define a countable set. If A is the set of all integers, then prove that A is countable. 1. 6 (B) Let X be a metric space with metric d. Show that the function d₁ defined by : $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ is also a metric on X. 6 OR (C) Prove that a set E is open if and only if its complement is closed. 6 (D) Prove that: Arbitrary intersection of closed sets is closed (i) (ii) Finite union of closed sets is closed. 6 UNIT—II 2. (A) Define a Cauchy Sequence. Prove that every convergent sequence in a metric space is a Cauchy Sequence. (B) Prove that compact subsets of metric spaces are closed. 6 (C) Suppose $K \subset Y \subset X$. Then prove that K is compact relative to X if and only if K is compact relative to Y. (D) If $\{E_n\}$ is a sequence of non-empty closed sets in a complete metric space X, if $E_{n+1} \subset E_n$, and if $\lim_{n\to\infty}$ diam $E_n = 0$, then prove that $\bigcap_{n\to\infty}^{\infty} E_n$ consists of exactly one point. 6 **UNIT—III** (A) If R is cumulative ring and $a \in R$, then show that $aR = \{ar/r \in R\}$ is a two-sided ideal 3. 6 (B) Prove that every finite integral domain is a field. 6 (C) Let $J(\sqrt{2})$ be a ring of real numbers of the form $m + n\sqrt{2}$ (where m and n are integers) under usual addition and multiplication of real numbers. Define $\phi: J(\sqrt{2}) \to J(\sqrt{2})$ by ϕ (m + n $\sqrt{2}$) = m - n $\sqrt{2}$. Then prove that : φ is a homomorphism and (ii) $I(\phi) = \{0\}.$ 6 (D) Let U be an ideal of a ring R then prove that R/U is a ring. 6

6

UNIT—IV

4. (A) Evaluate $\int_0^{1+i} (x - y + ix^2) dx$ along the straight line from z = 0 to z = 1 + i.

(B) Verify Cauchy's theorem for the function $f(z) = z^3 - iz^2 - 5z + 2i$, if path is a circle given by |z - 1| = 2.

OR

- (C) Using Cauchy integral formula, evaluate $\int_C \frac{(z-1) dz}{(z+1)^2 (z-2)}$, where C is the circle |z-i|=2.
- (D) (i) Find the residue of $\frac{z^3}{z^2 1}$ at $z = \infty$.
 - (ii) Evaluate $\int_{C} z e^{\frac{1}{z}} dz$ around the unit circle.

QUESTION -V

- 5. (A) Show that the set of all irrational numbers is uncountable. 1½
 - (B) If X is a metric space and $E \subset X$, then prove that $E = \overline{E}$ if and only if E is closed. 1½
 - (C) Define K-cell and explain 1-cell.
 - (D) Define separated sets. Show that if A = [0, 1] and B = (1, 2) then A and B are not separated. $1\frac{1}{2}$
 - (E) Show that every field is an integral domain.
 - (F) If ϕ is a homomorphism of Ring R into R', then show that $\phi(0) = 0'$, where $0' \in \mathbb{R}'$. 1½
 - (G) Define Rectifiable curve and contour.
 - (H) Evaluate $\int_{0}^{1+i} z dz$ along the line z = 0 to z = 1 + i.