Bachelor of Science (B.Sc.) Semester-V Examination METRIC SPACE, COMPLEX INTEGRATION AND ALGEBRA
 Optional Paper-2
 (Mathematics)

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve ALL the five questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Define a countable set. If A is the set of all integers, then prove that A is countable.6
(B) Let X be a metric space with metric d . Show that the function d_{1} defined by :

$$
\mathrm{d}_{1}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{d}(\mathrm{x}, \mathrm{y})}{1+\mathrm{d}(\mathrm{x}, \mathrm{y})}
$$

is also a metric on X .

OR

(C) Prove that a set E is open if and only if its complement is closed.
(D) Prove that:
(i) Arbitrary intersection of closed sets is closed
(ii) Finite union of closed sets is closed.

UNIT-II

2. (A) Define a Cauchy Sequence. Prove that every convergent sequence in a metric space is a Cauchy Sequence.6
(B) Prove that compact subsets of metric spaces are closed. 6

OR

(C) Suppose $\mathrm{K} \subset \mathrm{Y} \subset \mathrm{X}$. Then prove that K is compact relative to X if and only if K is compact relative to Y .
(D) If $\left\{\mathrm{E}_{\mathrm{n}}\right\}$ is a sequence of non-empty closed sets in a complete metric space X , if $\mathrm{E}_{\mathrm{n}+1} \subset \mathrm{E}_{\mathrm{n}}$, and if $\lim _{n \rightarrow \infty} \operatorname{diam} E_{n}=0$, then prove that $\bigcap_{n=1}^{\infty} E_{n}$ consists of exactly one point.

UNIT-III

3. (A) If R is cumulative ring and $a \in R$, then show that $a R=\{a r / r \in R\}$ is a two-sided ideal of R.
(B) Prove that every finite integral domain is a field.

OR

(C) Let $\mathrm{J}(\sqrt{2})$ be a ring of real numbers of the form $\mathrm{m}+\mathrm{n} \sqrt{2}$ (where m and n are integers) under usual addition and multiplication of real numbers. Define $\phi: \mathbf{J}(\sqrt{2}) \rightarrow \mathbf{J}(\sqrt{2})$ by $\phi(\mathrm{m}+\mathrm{n} \sqrt{2})=\mathrm{m}-\mathrm{n} \sqrt{2}$. Then prove that :
(i) ϕ is a homomorphism and
(ii) $\mathrm{I}(\phi)=\{0\}$.
(D) Let U be an ideal of a ring R then prove that R / U is a ring.

UNIT-IV

4. (A) Evaluate $\int_{0}^{1+\mathrm{i}}\left(\mathrm{x}-\mathrm{y}+\mathrm{ix}{ }^{2}\right) \mathrm{dx}$ along the straight line from $\mathrm{z}=0$ to $\mathrm{z}=1+\mathrm{i}$.
(B) Verify Cauchy's theorem for the function $f(z)=z^{3}-i z^{2}-5 z+2 i$, if path is a circle given by $|z-1|=2$.

OR

(C) Using Cauchy integral formula, evaluate $\int_{\mathrm{C}} \frac{(\mathrm{z}-1) \mathrm{dz}}{(\mathrm{z}+1)^{2}(\mathrm{z}-2)}$, where C is the circle $|\mathrm{z}-\mathrm{i}|=2$.
(D) (i) Find the residue of $\frac{\mathrm{z}^{3}}{\mathrm{z}^{2}-1}$ at $\mathrm{z}=\infty$.
(ii) Evaluate $\int_{\mathrm{C}} \mathrm{z} \mathrm{e}^{\frac{1}{z}} \mathrm{dz}$ around the unit circle.

QUESTION -V

5. (A) Show that the set of all irrational numbers is uncountable.
(B) If X is a metric space and $E \subset X$, then prove that $E=\bar{E}$ if and only if E is closed. $11 / 2$
(C) Define K-cell and explain 1-cell.
(D) Define separated sets. Show that if $A=[0,1]$ and $B=(1,2)$ then A and B are not separated.
(E) Show that every field is an integral domain.
(F) If ϕ is a homomorphism of Ring R into R^{\prime}, then show that $\phi(0)=0^{\prime}$, where $0^{\prime} \in \mathrm{R}^{\prime}$. $\quad 11 / 2$
(G) Define Rectifiable curve and contour. $11 \frac{11 / 2}{2}$
(H) Evaluate $\int_{0}^{1+\mathrm{i}} \mathrm{zdz}$ along the line $\mathrm{z}=0$ to $\mathrm{z}=1+\mathrm{i}$.
