Bachelor of Science (B.Sc.) Semester-V Examination
 METRIC SPACE, COMPLEX INTEGRATION AND ALGEBRA

Optional Paper-2

Mathematics
Time : Three Hours]
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Define a countable set and prove that the set of all sequences whose elements are the digits 0 and 1 is uncountable.
(B) In the metric space of real numbers \mathbb{R} with usual metric, show that the function $d(x, y)=\frac{|x-y|}{1+|x-y|}, \forall x, y \in \mathbb{R}$ is a metric.
(C) Prove that the finite intersection of open sets is open.
(D) Define interior of a set E . Prove that the interior of E is an open subset of E .

UNIT-II

2. (A) Prove that the sequence $\left\{x_{n}\right\}$ of real numbers is a Cauchy sequence if and only if it is convergent in R (a set of real numbers). Hence prove R is a complete metric space.
(B) If E is an infinite subset of a compact set K , then prove that E has a limit point in K .

OR

(C) Prove that a closed subset of a complete metric space is complete.
(D) If $\left\{I_{n}\right\}$ is a sequence of intervals in R^{1}, such that $I_{n} \supset I_{n+1}(n=1,2,3, \ldots \ldots)$, then prove that $\bigcap_{n=1}^{\infty} I_{n}$ is not empty.

UNIT-III

3. (A) Prove that a commutative ring R is an integral domain if and only if for $a, b, c \in R$ with $\mathrm{a} \neq 0, \mathrm{ab}=\mathrm{ac} \Rightarrow \mathrm{b}=\mathrm{c}$.
(B) If U, V are ideals of R, let $U+V=\{u+v \mid u \in U, v \in V\}$, then prove that $U+V$ is also an ideal.

OR

(C) If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R^{\prime} then prove that:
(i) $\phi(0)=0$ ', where 0 and 0^{\prime} are the zero elements of R and R^{\prime} respectively
(ii) $\phi(-a)=-\phi(a) \forall a \in R$ and
(iii) $\phi(1)$ is the unit element of R'.
(D) If U and V are ideals of a ring R , then prove that $\mathrm{U} \cap \mathrm{V}$ is also an ideal of R .

UNIT—IV

4. (A) If $f(z)$ is analytic function of z and if $f(z)$ is continuous at each point within and on a closed contour C , then prove that :

$$
\begin{equation*}
\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0 \tag{6}
\end{equation*}
$$

(B) Evaluate $\int_{\mathrm{C}} \frac{\mathrm{z}+4}{\mathrm{z}^{2}+2 \mathrm{z}+5}$, where C is the circle $|\mathrm{z}+1|=1$.

OR

(C) Evaluate $\int_{C} \frac{e^{z}}{z^{2}\left(z^{2}+9\right)} d z$ by the method of calculus of residues, where C is the circle

$$
\begin{equation*}
|\mathrm{z}|=4 \tag{6}
\end{equation*}
$$

(D) Prove that :

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\frac{\pi}{2} \tag{6}
\end{equation*}
$$

QUESTION—5

5. (A) Give a counter example to show that an arbitrary intersection of open sets need not be open.
(B) Prove that $\left(\bigcap_{\alpha} E_{\alpha}\right)^{C}=\bigcup_{\alpha}\left(E_{\alpha}^{C}\right)$ for the collection of sets E_{α}.
(C) Show that the sequence $\left\{x_{n}\right\}$, where $x_{n}=\frac{1}{n}, n \in N$ is a Cauchy sequence in R. Here N and R are respectively the sets of natural numbers and real numbers.
(D) Prove by giving an example that the separated sets are disjoint but disjoint sets need not be separated.
(E) Define :
(i) Integral domain
(ii) Division ring.
(F) Prove that if an ideal U of a ring R contains a unit element of R then $U=R$. $\quad 11 / 2$
(G) Determine whether the Cauchy's integral theorem is applicable for $\int_{C} \frac{z^{2}+5 z+6}{z-2} d z$ if C is the circle $|\mathrm{z}|=1$.
(H) Evaluate the residues of $\frac{\mathrm{z}}{(\mathrm{z}-1)(\mathrm{z}-2)(\mathrm{z}-3)}$ at $1,2,3$.
