Bachelor of Science (B.Sc.) Semester-V Examination

METRIC SPACE, COMPLEX INTEGRATION AND ALGEBRA

Optional Paper—2

Mathematics	
Time:	Three Hours] [Maximum Marks : 60
N.B. :—	- (1) Solve all the FIVE questions.
	(2) All questions carry equal marks.
	(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative
	in full.
	UNIT—I
1. (A)	Define a countable set and prove that the set of all sequences whose elements are the digits
1. (A)	
	0 and 1 is uncountable.
(B)	In the metric space of real numbers \mathbb{R} with usual metric, show that the function
	$d(x, y) = \frac{ x - y }{1 + x - y }, \forall x, y \in \mathbb{R} \text{ is a metric.}$
	OR
(C)	Prove that the finite intersection of open sets is open.
(D)	Define interior of a set E. Prove that the interior of E is an open subset of E. 6
UNIT—II	
2. (A)	Prove that the sequence {x _n } of real numbers is a Cauchy sequence if and only if
	it is convergent in R (a set of real numbers). Hence prove R is a complete metric space.
	6
(B)	If E is an infinite subset of a compact set K, then prove that E has a limit point in K.
	6
OR	
(C)	Prove that a closed subset of a complete metric space is complete. 6
	If $\{I_n\}$ is a sequence of intervals in R^l , such that $I_n \supset I_{n+1}$ (n = 1, 2, 3,), then prove that
(D)	If $\Gamma_n = 1, 2, 3, \dots$, then prove that
	$\bigcap_{n=1}^{\infty} I_n \text{ is not empty.} $

UNIT—III

- 3. (A) Prove that a commutative ring R is an integral domain if and only if for a, b, $c \in R$ with $a \ne 0$, $ab = ac \implies b = c$.
 - (B) If U, V are ideals of R, let $U + V = \{u + v \mid u \in U, v \in V\}$, then prove that U + V is also an ideal.

OR

- (C) If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R' then prove that :
 - (i) $\phi(0) = 0$, where 0 and 0' are the zero elements of R and R' respectively
 - (ii) $\phi(-a) = -\phi(a) + a \in R$ and
 - (iii) $\phi(1)$ is the unit element of R'.
- (D) If U and V are ideals of a ring R, then prove that $U \cap V$ is also an ideal of R.

UNIT—IV

4. (A) If f(z) is analytic function of z and if f(z) is continuous at each point within and on a closed contour C, then prove that :

$$\int_{C} f(z) dz = 0.$$

(B) Evaluate
$$\int_C \frac{z+4}{z^2+2z+5}$$
, where C is the circle $|z+1|=1$.

OR

(C) Evaluate $\int_C \frac{e^z}{z^2(z^2+9)} dz$ by the method of calculus of residues, where C is the circle

$$|z| = 4.$$

(D) Prove that:

$$\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^2} = \frac{\pi}{2}.$$

QUESTION—5

5. (A) Give a counter example to show that an arbitrary intersection of open sets need not be open.

1½

(B) Prove that
$$\left(\bigcap_{\alpha} E_{\alpha}\right)^{C} = \bigcup_{\alpha} (E_{\alpha}^{C})$$
 for the collection of sets E_{α} .

BKR—11088 2 NIR/KW/18/2136

- (C) Show that the sequence $\{x_n\}$, where $x_n = \frac{1}{n}$, $n \in N$ is a Cauchy sequence in R. Here N and R are respectively the sets of natural numbers and real numbers.
- (D) Prove by giving an example that the separated sets are disjoint but disjoint sets need not be separated.
- (E) Define:
 - (i) Integral domain
 - (ii) Division ring.
- (F) Prove that if an ideal U of a ring R contains a unit element of R then U = R. $1\frac{1}{2}$
- (G) Determine whether the Cauchy's integral theorem is applicable for $\int_{C}^{\infty} \frac{z^2 + 5z + 6}{z 2} dz$ if C is the circle |z| = 1.
- (H) Evaluate the residues of $\frac{z}{(z-1)(z-2)(z-3)}$ at 1, 2, 3.

