KNT/KW/16/5171

Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination

PHYSICS

Paper—2 (502)

(Quantum Mechanics, Nano Materials and Nano Technology)

Time: Three Hours] [Maximum Marks: 50 **N.B.** :— (1) **ALL** questions are compulsory. (2) Draw neat diagrams wherever necessary. **EITHER** (A) Explain the dual nature of matter. Describe Davission and Germer's experiment to prove the 1. 5 wave nature of material particle. (B) (i) 3 Discuss the experimental arrangement and results of compton effect. (ii) A photon of energy 1.02 MeV undergo compton scattering through 180°. Calculate the energy of the scattered photon, if compton wavelength is 0.02426 Å. 2 OR (C) Define phase velocity of a particle and group velocity of a wave packet. Derive the relation between them. $2\frac{1}{2}$ (D) Derive Heisenberg uncertainty principle from a gamma ray microscope. $2\frac{1}{2}$ (E) Explain the failures of classical mechanics to explain black body spectrum. $2\frac{1}{2}$ (F) Calculate the de Broglie wavelength of an electron which has kinetic energy equal to 15 eV. $m_e = 9.1 \times 10^{-31} \text{ kg}.$ $2\frac{1}{2}$ **EITHER** (A) State Ehrenfest theorem and prove that $\frac{d}{dt} < Px > = -\left\lceil \frac{dV}{dx} \right\rceil = < Fx > .$ 5 2. (B) (i) What is wave function? Give the physical interpretation of wave function. 3 (ii) Find eigen function of momentum operator $-i\hbar \frac{d}{dx}$ with eigen values λ .

1

NVM-8005

(Contd.)

2

	OR			
	(C)	Find the value of angular momentum operator in Cartesian co-ordinates.	21/2	
	(D)	What is well behaved wave functions? State the conditions for it.	21/2	
	(E)	Normalise the given wave function $\psi_n(x) = A \sin \frac{n\pi x}{a}$.	2½	
	(F)	State the postulates of quantum mechanics.	21/2	
	EIT	HER		
3.	(A)	Explain Top-down and Bottom-up approaches for the synthesis of nano materials.	5	
	(B)	(i) Explain any two physical properties of nano materials.	3	
		(ii) Find out the surface to volume ratio of a quantum dot of radius 3 nm.	2	
	OR			
	(C)	Differentiate between nano materials and bulk materials.	21/2	
	(D)	What would be the surface to volume ratio of a nano cube of side length 4 nm?	21/2	
	(E)	Explain 0D, 1D, 2D and 3D materials with examples.	21/2	
	(F)	Why is surface to volume ratio very high for nano particles compared to bulk materials? with a simple example.	Explain 2½	
	EIT	HER		
4.	(A)	Explain the construction and working of scanning electron microscope. What are the limitations of SEM ?		
	(B)	(i) Explain how particle size can be determined by using Debye-Scherer's equation. We the other techniques for determination of particle size ?	What are 3	
		(ii) In the particles are diffracted by X-rays of wavelength 1.54 Å at diffracting a 27° with F.W.H.M. of 0.5°. Determine the crystallite size of the particles.	angle of	
	OR			
	(C)	Distinguish between SEM and TEM.	21/2	
	(D)	Calculate wavelength of X-ray diffracted at 40° in first order from nano material having into distance from $0.89~\text{Å}$.	erplaner 2½	
	(E)	Explain the sol-gel technique for synthesis of nano materials.	21/2	
	(F)	Describe the application of nanotechnology in drug delivery and in medicine.	2½	
NVN	1 —800	2 KNT/KW	V/16/5171	

5. Attempt any *ten*:

- (i) Write Heisenberg's uncertainty relation in terms of energy and time.
- (ii) Calculate energy of a photon of wavelength 5000 Å. Given $h = 6.63 \times 10^{-34}$ Js, $C = 3 \times 10^{8}$ m/s.
- (iii) State de Broglie hypothesis.
- (iv) Using momentum operator, find an operator for kinetic energy of a particle.
- (v) Find the minimum energy of an electron constrained to move linearly in a box of length 10^{-11} m.
- (vi) What is the normalization condition for wave function?
- (vii) What are nano materials?
- (viii) What do you understand by a quantum well?
- (ix) If surface to volume ratio of a quantum dot is 2/nm, then find the radius of the quantum dot.
- (x) Write value of 0.67° of a diffraction peak in radians.
- (xi) Name the different characterization techniques of the nano-particle.
- (xii) How nanotechnology is useful to farmers?

 $1 \times 10 = 10$