Bachelor of Arts (B.A.) Part-I First Semester Examination MATHEMATICS (Algebra and Trigonometry) Optional Paper-1

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question No. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Reduce the matrix A to its normal form and find its rank where :

$$
A=\left[\begin{array}{llll}
1 & 3 & 4 & 5 \\
1 & 2 & 6 & 7 \\
1 & 5 & 0 & 1
\end{array}\right]
$$

(B) Investigate for what values of λ and μ, the simultaneous equations
$x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have
(i) no solution
(ii) a unique solution,
(iii) an infinite number of solutions.

OR

(C) Find the eigenvalues of the matrix :

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & 2 & 0
\end{array}\right]
$$

and find the corresponding eigen vector of the matrix associated with only one eigen value. 6
(D) Show that the matrix A satisfies Cayley-Hamilton's theorem where

UNIT-II

2. (A) Find the condition that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ be in arithmetical progression and hence solve $\mathrm{x}^{3}-12 \mathrm{x}^{2}+39 \mathrm{x}=28$.
(B) Solve the reciprocal equation :

$$
x^{4}-10 x^{3}+26 x^{2}-10 x+1=0
$$

OR

(C) Solve the Cubic equation $x^{3}-6 x-9=0$ by Cardon's method.
(D) Solve the equation

$$
x^{4}-2 x^{3}-5 x^{2}+10 x-3=0 \text { by Ferrari's method. }
$$

UNIT-III

3. (A) If $x_{r}=\cos \left(\frac{\pi}{2^{r}}\right)+i \sin \left(\frac{\pi}{2^{r}}\right)$, then prove that $x_{1}, x_{2}, x_{3} \ldots \ldots$ inf $=-1$.
(B) Solve the equation $x^{5} \quad 1=0$, using DeMoivre's theorean.

OR
(C) If $\tan (\theta+i \phi)=\tan \alpha+i \sec \alpha$, then prove that $\mathrm{e}^{2 \phi}= \pm \cot \frac{\alpha}{2}$.
(D) If $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$. Then prove the Gregory series

$$
\begin{equation*}
\theta=\tan \theta-\frac{1}{3} \tan ^{3} \theta+\frac{1}{5} \tan ^{5} \theta-\ldots . \tag{6}
\end{equation*}
$$

UNIT-IV

4. (A) Prove that the $\operatorname{set}=\left\{1, w, w^{2}\right\}$ with $w^{3}=1$ is an abelian group of order 3 with respect to multiplication.
(B) In a group $(\mathrm{G}, 0)$ prove that :
(i) identity element in G is unique;
(ii) inverse of every element in G is unique;
(iii) $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{G}$.
(C) Prove the necessary and sufficient condition that a non-empty subset H of group (G, o) is a subgroup of G if and only if :
(i) $\mathrm{a}, \mathrm{b} \in \mathrm{H} \Rightarrow \mathrm{a} \circ \mathrm{b}^{-1} \in \mathrm{H}$ and
(ii) $\mathrm{a} \in \mathrm{H} \Rightarrow \mathrm{a}^{-1} \in \mathrm{H}$.
(D) Prove that every permutation can be expressed as a product of transpositions. Express $\mathrm{f}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2\end{array}\right)$ as a product of disjoint cycles and find whether permutation f is even or odd.

QUESTION-V

5. (A) Write the augmented matrix for the system of equations $x+2 y+3 z=4,2 x+2 y+8 z=7$, $\mathrm{x}-\mathrm{y}+9 \mathrm{z}=1$.
(B) Find the characteristic equation for the matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
(C) Form the equation whose roots are 1,2 and 3 .
(D) If α, β, γ are the roots of cubic equation $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$, then find the value of $\Sigma \alpha^{2}$.
(E) Find all the values of $(-1)^{1 / 3}$.
(F) Show that: $\log (x i)=\log x+i\left(2 n+\frac{1}{2}\right) \pi$.
(G) Let $\mathrm{G}=\{0,1,2,3,4\}$ be a finite abelian group of order 5 with respect to addition modulo 5 . Find inverses of $1,2,3$.
(H) Find the cycles and the orbits of the permutation:

$$
\mathrm{f}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 2 & 1 & 6 & 5 & 7
\end{array}\right)
$$

