## NJR/KS/18/6813

6

# Bachelor of Arts (B.A.) Part–I First Semester Examination MATHEMATICS (Algebra and Trigonometry) Optional Paper–1

Time: Three Hours] [Maximum Marks: 60

- **N.B.** :— (1) Solve all the **five** questions.
  - (2) All questions carry equal marks.
  - (3) Question No. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

### UNIT-I

1. (A) Reduce the matrix A to its normal form and find its rank where :

 $A = \begin{bmatrix} 1 & 3 & 4 & 5 \\ 1 & 2 & 6 & 7 \\ 1 & 5 & 0 & 1 \end{bmatrix}$ 

(B) Investigate for what values of  $\lambda$  and  $\mu,$  the simultaneous equations

$$x + y + z = 6$$
,  $x + 2y + 3z = 10$ ,  $x + 2y + \lambda z = \mu$  have

- (i) no solution
- (ii) a unique solution,
- (iii) an infinite number of solutions.

OR

(C) Find the eigenvalues of the matrix :

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & 2 & 0 \end{bmatrix}$$

and find the corresponding eigen vector of the matrix associated with only one eigen value. 6

(D) Show that the matrix A satisfies Cayley-Hamilton's theorem where

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}.$$

### **UNIT-II**

- 2. (A) Find the condition that the roots of the equation  $x^2 - px^2 + qx - r = 0$  be in arithmetical progression and hence solve  $x^3 - 12x^2 + 39x = 28$ . 6
  - (B) Solve the reciprocal equation:

$$x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$$

6

6

6

### OR

- (C) Solve the Cubic equation  $x^3 6x 9 = 0$  by Cardon's method.
- (D) Solve the equation

$$x^4 - 2x^3 - 5x^2 + 10x - 3 = 0$$
 by Ferrari's method.

- 6

- (C) If  $tan(\theta + i\phi) = tan\alpha + i sec\alpha$ , then prove that  $e^{2\phi} = \pm \cot \frac{\alpha}{2}$ . 6
- (D) If  $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$ . Then prove the Gregory series

$$\theta = \tan \theta - \frac{1}{3} \tan^3 \theta + \frac{1}{3} \tan^5 \theta - \dots$$

$$\theta = \tan \theta - \frac{1}{3} \tan^3 \theta + \frac{1}{3} \tan^5 \theta - \dots$$
(A) Prove that the set  $\theta = \{1, w, w^2\}$  with  $w^3 = 1$  is an abelian group of order 3 with respect to

- 4. multiplication. 6
  - (B) In a group (G, 0) prove that:
    - identity element in G is unique; (i)
    - inverse of every element in G is unique;

(iii) 
$$(a^{-1})^{-1} = a, \forall a \in G.$$

OR

- (C) Prove the necessary and sufficient condition that a non-empty subset H of group (G, o) is a subgroup of G if and only if:
  - (i)  $a, b \in H \Rightarrow a \circ b^{-1} \in H$  and

(ii) 
$$a \in H \Rightarrow a^{-1} \in H$$
.

(D) Prove that every permutation can be expressed as a product of transpositions. Express  $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$  as a product of disjoint cycles and find whether permutation f is even 6 or odd.

- QUESTION-V

  (A) Write the augmented matrix for the system of equations x + 2y + 3z = 4, 2x + 2y + 8z = 7, 5. 11/2 x - y + 9z = 1.
  - (B) Find the characteristic equation for the matrix  $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ . 11/2
  - $1\frac{1}{2}$ (C) Form the equation whose roots are 1, 2 and 3.
  - (D) If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the roots of cubic equation  $x^3 + px^2 + qx + r = 0$ , then find the value of  $\Sigma \alpha^2$ .  $1\frac{1}{2}$
  - (E) Find all the values of  $(-1)^{1/3}$ .  $1\frac{1}{2}$
  - Show that :  $\log(xi) = \log x + i \left(2n + \frac{1}{2}\right)\pi$ . 11/2
  - (G) Let  $G = \{0, 1, 2, 3, 4\}$  be a finite abelian group of order 5 with respect to addition modulo 5. Find inverses of 1, 2, 3.  $1\frac{1}{2}$
  - (H) Find the cycles and the orbits of the permutation :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 2 & 1 & 6 & 5 & 7 \end{pmatrix}.$$



