NRT/KS/19/5755

Bachelor of Arts (B.A.) First Semester Examination MATHEMATICS (Algebra and Trigonometry) Optional Paper—1

Time: Three Hours] [Maximum Marks: 60

N.B. :— (1) Solve all the *five* questions.

- (2) All questions carry equal marks.
- (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) Find rank of the matrix by row-reduction:

$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 3 & 2 \\ 3 & -2 & 2 & 4 \end{bmatrix}$$

(B) Solve the equations:

$$x + y + z = 3$$
; $x + 2y + 3z = 4$; $x + 4y - 9z = 6$

OR

(C) Find eigen values and eigen vectors of the matrix :

$$\begin{bmatrix} 3 & 2 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

(D) Verify Caley-Hamilton theorem for the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ and hence find A^{-1} .

UNIT—II

2. (A) Solve the equation:

$$x^3 - 6x^2 + 3x + 10 = 0$$
, if roots are in arithmetic progression.

(B) Solve the equation $x^4 + 2x^2 - 22x + 7 = 0$, if one of the roots is $2 + \sqrt{3}$.

OR

(C) Solve by Cardon's method:

$$x^3 + x^2 - 16x + 20 = 0.$$

(D) Solve by Ferrari's method:

$$x^4 - 2x^3 - 5x^2 + 10x - 3 = 0.$$

UNIT—III

3. (A) Find all the values of $(32)^{\frac{1}{6}}$.

(B) Expand $\cos 7\theta$ in terms of $\cos \theta$ and $\sin \theta$.

OR

(C) Prove that:

(i) $\cosh^2 x - \sinh^2 x = 1$

(ii)
$$\tanh^{-1}x = \sinh^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$$

(D) Separate $\log_{e}(x + iy)$ into real and imaginary parts.

UNIT—IV

4. (A) Prove that the set of fourth roots of unity form an abelian group under multiplication.

(B) If (G, o) is a group and a, $b \in G$, then prove that equations $a \circ x = b$ and $y \circ a = b$ have unique solutions in G.

OR

(C) If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
 and $g = \begin{pmatrix} 2 & 4 & 1 & 3 \\ 3 & 1 & 2 & 4 \end{pmatrix}$ then find $f \circ g$, $g \circ f$, $(f \circ g)^{-1}$, $(g \circ f)^{-1}$.

Is $f \circ g = g \circ f$?

(D) Show that any two right (or left) cosets of subgroup are either disjoint or identical. 6

Question-V

- 5. (A) Give an example of echelon form of a matrix which is not in a normal form.
 - (B) Show that A and A^T have same eigen values. 1½
 - (C) Form an equation whose one of the roots is 1 + 2i. $1\frac{1}{2}$
 - (D) Find an equation whose roots are reciprocal of the roots of $x^3 2x^2 + 3x + 7 = 0$. 1½
 - (E) Prove that:
 - (i) $\cos iz = \cos hz$

(ii)
$$\sin iz = i \sin hz$$
. $1\frac{1}{2}$

(F) Prove that
$$\log i = \frac{\pi}{2}i$$
.

- (G) Prove that in a group G, $(a^{-1})^{-1} = a \ \forall \ a \in G$.
- (H) Define a subgroup of a group.