Bachelor of Arts (B.A.) First Semester Examination
 MATHEMATICS (Algebra and Trigonometry)
 Optional Paper-1

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Find rank of the matrix by row-reduction :

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 2 & 3 & 2 \\
3 & -2 & 2 & 4
\end{array}\right]
$$

(B) Solve the equations :

$$
\begin{align*}
& x+y+z=3 ; x+2 y+3 z=4 \\
& x+4 y-9 z=6 \tag{6}
\end{align*}
$$

OR

(C) Find eigen values and eigen vectors of the matrix :

$$
\left[\begin{array}{lll}
3 & 2 & 4 \\
0 & 2 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

(D) Verify Caley-Hamilton theorem for the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ and hence find A^{-1}.

UNIT-II

2. (A) Solve the equation :

$$
x^{3}-6 x^{2}+3 x+10=0, \text { if roots are in arithmetic progression. }
$$6

(B) Solve the equation $x^{4}+2 x^{2}-22 x+7=0$, if one of the roots is $2+\sqrt{3}$.

OR

(C) Solve by Cardon's method :

$$
\begin{equation*}
x^{3}+x^{2}-16 x+20=0 \tag{6}
\end{equation*}
$$

(D) Solve by Ferrari's method :

$$
x^{4}-2 x^{3}-5 x^{2}+10 x-3=0
$$

UNIT-III

3. (A) Find all the values of $(32)^{\frac{1}{6}}$.
(B) Expand $\cos 7 \theta$ in terms of $\cos \theta$ and $\sin \theta$.

OR

(C) Prove that :
(i) $\cosh ^{2} \mathrm{x}-\sinh ^{2} \mathrm{x}=1$
(ii) $\tanh ^{-1} \mathrm{x}=\sinh ^{-1}\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)$
(D) Separate $\log _{\mathrm{e}}(\mathrm{x}+\mathrm{iy})$ into real and imaginary parts.

UNIT-IV

4. (A) Prove that the set of fourth roots of unity form an abelian group under multiplication.
(B) If (G, o) is a group and $a, b \in G$, then prove that equations $a \circ x=b$ and $y \circ a=b$ have unique solutions in G.

OR

(C) If $\mathrm{f}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$ and $g=\left(\begin{array}{llll}2 & 4 & 1 & 3 \\ 3 & 1 & 2 & 4\end{array}\right)$ then find $f \circ g$, $g \circ f,(f \circ g)^{-1},(g \circ f)^{-1}$. Is $f \circ g=g \circ f$?
(D) Show that any two right (or left) cosets of subgroup are either disjoint or identical.

Question-V

5. (A) Give an example of echelon form of a matrix which is not in a normal form.
(B) Show that A and A^{T} have same eigen values. $11 / 2$
(C) Form an equation whose one of the roots is $1+2 \mathrm{i}$. $11 / 2$
(D) Find an equation whose roots are reciprocal of the roots of $x^{3}-2 x^{2}+3 x+7=0 . \quad 11 / 2$
(E) Prove that:
(i) $\quad \cos \mathrm{iz}=\cos \mathrm{hz}$
(ii) $\sin \mathrm{iz}=\mathrm{i} \sin \mathrm{hz}$.
(F) Prove that $\log \mathrm{i}=\frac{\pi}{2} \mathrm{i}$.
(G) Prove that in a group G, $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a} \forall \mathrm{a} \in \mathrm{G}$.
(H) Define a subgroup of a group.
