Bachelor of Arts (B.A.) Part-I (Semester-I) Examination STATISTICS Optional Paper-1
 (Probability Theory)

Time : Three Hours]
[Maximum Marks : 50
N.B. :- ALL questions are compulsory and carry equal marks.

1. (A) Define the following giving one example of each :
(i) Complementary event
(ii) Elementary event
(iii) Impossible event
(iv) Mutually exclusive events
(v) Exhaustive events.

State the axiomatic definition of probability. Using this definition prove the following results :
(i) Probability of an impossible event is zero.
(ii) $\mathrm{P}(\mathrm{S})=1$, where S is the sample space.
(iii) $\mathrm{P}(\overline{\mathrm{A}})=1-\mathrm{P}(\mathrm{A})$.

OR
(E) There are 8 bulbs in the stock of a shop, of which 3 are defective. The shopkeeper on customer's demand, picks up 2 bulbs randomly. What is the probability that both the bulbs are defective ?
(F) Let A, B and C be three events in the sample space. Find expressions as union and/or intersection of these events in the following cases :
(i) At least one of three events occur
(ii) A occurs with either B or C
(iii) A and B occur but C does not occur.
(G) Give classical definition of probability. State its limitations.
(H) A, B and C are three mutually exclusive and exhaustive events.

Find $P(B)$, if $\frac{1}{3} P(C)=\frac{1}{2} P(A)=P(B)$. Also find $P(\bar{A} \cap \bar{B} \cap \bar{C})$.
2. (A) Define :
(i) Independent events
(ii) Conditional probability of event A given the event B .

Show that conditional probability satisfies, all the axioms of probability. State and prove the multiplicative law of probability for n events $A_{1}, A_{2}, \ldots \ldots . ., A_{n}$.

OR
(E) Define pair-wise and mutual independence of n events $A_{1}, A_{2}, \ldots \ldots ., A_{n}$. An unbiased coin is tossed 3 times. A denotes the event that a head occurs on each of the first two tosses, B is the event that a tail occurs on the third toss and C is the eyent that exactly two tails occur in the 3 tosses. Check whether A, B and C are pair-wise independent or not.
(F) If the events $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \ldots \ldots \mathrm{~B}_{\mathrm{n}}$ form a partition of the sample space with $\mathrm{P}\left(\mathrm{B}_{\mathrm{i}}\right) \neq 0$ for $\mathrm{i}=1,2, \ldots . . \mathrm{n}$, then for any event A in the sample space show that:

$$
\mathrm{P}(\mathrm{~A})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right) .
$$

The probability that it will be sunny tomorrow is $1 / 3$. If it is sunny, the probability that Sania plays tennis is $4 / 5$. The corresponding probability of playing tennis if it is not sunny is $2 / 5$. What is the probability that Sania plays tennis ? $5+5$
3. (A) Define the cumulative distribution function of a random variable. State and prove its properties.

If X is a r.v. with pdf $\mathrm{f}(\mathrm{x})=\frac{1}{18}(6-\mathrm{x}), \quad 0 \leq \mathrm{x} \leq 6$

$$
=0 \quad \text {, otherwise }
$$

then find its cdf. Also find :
(i) $\mathrm{P}[\mathrm{X}>2]$
(ii) $\mathrm{P}[2 \leq \mathrm{X} \leq 4]$.

OR

(E) Let a r.v. X has the pmf,

$$
\mathrm{p}(\mathrm{x})=\mathrm{P}[\mathrm{X}=\mathrm{x}]=\frac{\mathrm{x}}{15}, \mathrm{x}=1,2,3,4,5 .
$$

Find :
(i) cdf of X
(ii) $\mathrm{P}[\mathrm{X}>3]$
(iii) $\mathrm{P}[1<\mathrm{X}<4]$.
(F) Let X be a r.v. with pdf

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{x}) & =6 \mathrm{x}(1-\mathrm{x}) & & \\
& & & 0<\mathrm{x}<1 \\
& =0 & & \\
\text { otherwise }
\end{array}
$$

Find :
(i) $\mathrm{P}[\mathrm{X}<1 / 4]$
(ii) $\mathrm{P}[\mathrm{X}>1 / 2]$.
(G) Define expected value of a r.v.

Let X be a r.v. with cdf $F(x)$ given by,

$$
F(x)=\left\{\begin{array}{cll}
0 & , & \text { for } x<-1 \\
\frac{x+1}{2} & , & \text { for }-1 \leq x<1 \\
1 & , & \text { for } x \geq 1
\end{array}\right.
$$

Find its pdf. Also find $E(X)$.
(H) Let X be a r.v. with $\operatorname{pdf} f(x)$ given by

$$
\begin{array}{rlrlrl}
\mathrm{f}(\mathrm{x}) & =\frac{1}{5} & , & & \text { for } 2<\mathrm{x}<7 \\
& =0 & , & \text { elsewhere }
\end{array}
$$

(i) Draw the graph of pdf.
(ii) Find $\mathrm{P}(3<\mathrm{X}<5)$.
4. (A) Define probability generating function of a discrete r.v. Explain how the mean and the variance of the r.v. are obtained from its pgf. Obtain the pgf of $\frac{X-a}{b}$.
(B) Define median and mode of a r.v. Explain how these measures are calculated for a discrete and a continuous r.v.
Let X be a r.v. with pdf $f(x)$ given by

$$
\begin{array}{rlrlrl}
\mathrm{f}(\mathrm{x}) & =3 \mathrm{x}^{2} & , & & 0 \leq \mathrm{x} \leq 1 \\
& =0, & & \text { otherwise }
\end{array}
$$

Find :
(i) Mean
(ii) Median
(iii) $\mathrm{V}(\mathrm{X})$.
(E) Define the following for a r.v. :
(i) The $r^{\text {th }}$ raw moment about A
(ii) The $r^{\text {th }}$ raw moment about origin
(iii) The $\mathrm{r}^{\text {th }}$ central moment.

Derive the relationship for $r^{\text {th }}$ central moment in terms of raw moments about origin. Hence obtain expressions for μ_{2}, μ_{3} and μ_{4}. Let X be a r.v. with $\mu_{1}^{\prime}=2 / 3, \mu_{2}^{\prime}=1 / 2$ and $\mu_{3}^{\prime}=2 / 5$. Find μ_{2} and μ_{3}.
5. Solve any ten out of the following questions:
(A) If A and B are exhaustive and mutually exclusive events then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=$ \qquad and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=$ \qquad
(B) If $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=4 / 5$ then find $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})$.
(C) State the extension of addition law for n events $A_{1}, A_{2}, \ldots \ldots A_{n}$.
(D) Events A and B are such that,

$$
\mathrm{P}(\mathrm{~A})=1 / 4, \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=1 / 2 \text { and } \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=2 / 3 .
$$

Are A and B independent?
(E) A fair die is thrown twice. What is the probability that the sum of two numbers at the upper faces is 6 given that no die shows a number ' 4 '?
(F) If A, B and C are 3 events then write the conditions for their mutual independence.
(G) Show that $\mathrm{E}(\mathrm{cX})=\mathrm{cE}(\mathrm{X})$ where c is a constant.
(H) A r.v. assumes values 1,2 and 3 with $\mathrm{P}[\mathrm{X} \leq 2]=2 / 3$. Find the pmf of X .
(I) Let X be a r.v. with $\operatorname{pdf} f(x)$, where

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{x}) & =\mathrm{kx}(2-\mathrm{x}) & & \\
& & 0 \leq \mathrm{x} \leq 2 \\
& =0 & & \\
\text { otherwise }
\end{array}
$$

Find the value of k .
(J) Let X be a r.v. and c be a constant, then show that $\mathrm{V}(\mathrm{cX})=\mathrm{c}^{2} \mathrm{~V}(\mathrm{X})$. Hence state $V(4 X+5)$.
(K) If Karl Pearson's coefficient of skewness for a probability distribution is $\frac{1}{2}$ and the mean and mode are 5 and 2 respectively. Find the standard deviation.
(L) State the formula for the following measures :
(i) Measure of dispersion based on partition values.
(ii) Measure of skewness based on partition values.

